Full Text:   <3219>

CLC number: TK124

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-05-16

Cited: 6

Clicked: 6046

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.6 P.427-434

http://doi.org/10.1631/jzus.A1300076


Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger*


Author(s):  Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan

Affiliation(s):  . Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   jintao@zju.edu.cn

Key Words:  Heat transfer, Heat exchanger, Oscillating flow, Pressure ratio, Pulse tube refrigerator


Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger[J]. Journal of Zhejiang University Science A, 2013, 14(6): 427-434.

@article{title="Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger",
author="Ke Tang, Juan Yu, Tao Jin, Zhi-hua Gan",
journal="Journal of Zhejiang University Science A",
volume="14",
number="6",
pages="427-434",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300076"
}

%0 Journal Article
%T Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger
%A Ke Tang
%A Juan Yu
%A Tao Jin
%A Zhi-hua Gan
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 6
%P 427-434
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300076

TY - JOUR
T1 - Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger
A1 - Ke Tang
A1 - Juan Yu
A1 - Tao Jin
A1 - Zhi-hua Gan
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 6
SP - 427
EP - 434
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300076


Abstract: 
Compression and expansion of a working gas due to the pressure oscillation of an oscillating flow can lead to a temperature variation of the working gas, which will affect the heat transfer in the oscillating flow. This study focuses on the impact of the compression-expansion effect, indicated by the pressure ratio, on the heat transfer in a finned heat exchanger under practical operating conditions of the ambient-temperature heat exchangers in Stirling-type pulse tube refrigerators. The experimental results summarized as the Nusselt number are presented for analysis. An increase in the pressure ratio can result in a marked rise in the Nusselt number, which indicates that the compression-expansion effect should be considered in characterizing the heat transfer of the oscillating flow, especially in the cases with a higher Valensi number and a lower maximum Reynolds number.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Anderson, J.D., 1995.  Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill,New York :

[2] Bouvier, P., Stouffs, P., Bardon, J.P., 2005. Experimental study of heat transfer in oscillatory flow. International Journal of Heat and Mass Transfer, 48(12):2473-2482. 


[3] Chen, Y., Luo, E.C., Dai, W., 2009. Heat transfer characteristics of oscillating flow regenerators in cryogenic temperature range below 20 K. Cryogenics, 49(7):313-319. 

[4] Cooper, W.L., Nee, V.W., Yang, K.T., 1994. An experimental investigation of convective heat transfer from the heated floor of a rectangular duct to a low frequency, large tidal displacement oscillating flow. International Journal of Heat and Mass Transfer, 37(4):581-592. 

[5] de Waele, A.T.A.M., 2011. Basic operation of cryocoolers and related thermal machines. Journal of Low Temperature Physics, 164(5-6):179-236. 


[6] de Waele, A.T.A.M., 2012. Finite heat-capacity effects in regenerators. Cryogenics, 52(1):1-7. 


[7] Dietrich, M., Thummes, G., 2010. Two-stage high frequency pulse tube cooler for refrigeration at 25 K. Cryogenics, 50(4):281-286. 


[8] Gusev, V., Lotton, P., Bailliet, H., Job, S., Bruneau, M., 2001. Thermal wave harmonics generation in the hydrodynamical heat transport in thermoacoustics. Journal of the Acoustical Society of America, 109(1):84-90. 

[9] Hino, M., Sawamoto, M., Takasu, S., 1976. Experiments on transition to turbulence in an oscillatory pipe-flow. Journal of Fluid Mechanics, 75(2):193-207. 

[10] Incropera, F.P., DeWitt, D.P., Bergman, T.L., 2007.  Fundamentals of Heat and Mass Transfer. Wiley,New York :

[11] Jaworski, A.J., Piccolo, A., 2012. Heat transfer processes in parallel-plate heat exchangers of thermoacoustic devices—numerical and experimental approaches. Applied Thermal Engineering, 42:145-153. 

[12] Meng, F., Wang, M., Li, Z., 2008. Lattice Boltzmann simulations of conjugate heat transfer in high-frequency oscillating flows. International Journal of Heat and Fluid Flow, 29(4):1203-1210. 


[13] Merkli, P., Thomann, H., 1975. Transition to turbulence in oscillating pipe flow. Journal of Fluid Mechanics, 68(3):567-575. 

[14] Nsofor, E.C., Celik, S., Wang, X.D., 2007. Experimental study on the heat transfer at the heat exchanger of the thermoacoustic refrigerating system. Applied Thermal Engineering, 27(14-15):2435-2442. 


[15] Piccolo, A., 2011. Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow. International Journal of Heat and Mass Transfer, 54(21-22):4518-4530. 


[16] Qiu, L.M., Zhi, X.Q., Han, L., Cao, Q., Gan, Z.H., 2012. Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube. Cryogenics, 52(10):575-579. 


[17] Shi, L., Yu, Z., Jaworski, A.J., 2010. Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system. International Journal of Thermal Sciences, 49(9):1688-1701. 


[18] Swift, G.W., 1992. Analysis and performance of a large thermoacoustic engine. Journal of the Acoustical Society of America, 92(3):1551-1563. 

[19] Swift, G.W., 2002.  Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America, American Institute of Physics,New York :

[20] Tang, K., Huang, Z.J., Jin, T., Bao, R., Chen, G.B., 2007. Influence of input acoustic power on regenerator’s performance. Journal of Zhejiang University-SCIENCE A, 8(9):1452-1456. 


[21] Tang, K., Huang, Z.J., Jin, T., Chen, G.B., 2008. Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier. Journal of Zhejiang University-SCIENCE A, 9(1):79-87. 


[22] Tang, K., Zhang, Y., Lin, X.G., Jin, S.H., Jin, T., 2011. Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel. Cryogenics, 51(3):139-145. 


[23] Zhao, T.S., Cheng, P., 1996. Oscillatory heat transfer in a pipe subjected to a laminar reciprocating flow. Journal of Heat Transfer-Transactions of the ASME, 118(3):592-597. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE