Full Text:   <4401>

Summary:  <2452>

CLC number: TU398+.9

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-10-12

Cited: 1

Clicked: 9577

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.11 P.778-788

http://doi.org/10.1631/jzus.A1300206


Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading*


Author(s):  Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li

Affiliation(s):  . Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China

Corresponding email(s):   chunyangzhu86224@gmail.com

Key Words:  Concrete-filled glass fiber reinforced polymer (GFRP)-steel tube, Seismic, Energy dissipation, Stiffness degradation


Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li. Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading[J]. Journal of Zhejiang University Science A, 2013, 14(11): 778-788.

@article{title="Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading",
author="Chun-yang Zhu, Ying-hua Zhao, Shuang Gao, Xiao-fei Li",
journal="Journal of Zhejiang University Science A",
volume="14",
number="11",
pages="778-788",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300206"
}

%0 Journal Article
%T Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading
%A Chun-yang Zhu
%A Ying-hua Zhao
%A Shuang Gao
%A Xiao-fei Li
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 11
%P 778-788
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300206

TY - JOUR
T1 - Mechanical behavior of concrete filled glass fiber reinforced polymer-steel tube under cyclic loading
A1 - Chun-yang Zhu
A1 - Ying-hua Zhao
A1 - Shuang Gao
A1 - Xiao-fei Li
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 11
SP - 778
EP - 788
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300206


Abstract: 
The mechanical behavior of concrete-filled glass fiber reinforced polymer (GFRP)-steel tube structures under combined seismic loading is investigated in this study. Four same-sized specimens with different GFRP layout modes were tested by a quasi-static test system. Finite element analysis (FEA) was also undertaken and the results were presented. Results of the numerical simulation compared well with those from experimental tests. Parametric analysis was conducted by using the FE models to evaluate the effects of GFRP thickness, axial compression rate, and cross sectional steel ratio. The experimental and numerical results show that the technique of GFRP strengthening is effective in improving the seismic performance of traditional concrete-filled steel tubes, with variations related to different GFRP layout modes.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bousias, S.N., Triantafillou, T.C., Fardis, M.N., Spathis, L., ORegan, B.A., 2004. Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion. ACI Structural Journal, 101(4):512-520. 

[2] Bradford, M.A., Loh, H.Y., Uy, B., 2002. Slenderness limits for filled circular steel tubes. Journal of Constructional Steel Research, 58(2):243-252. 


[3] Brown, R.P., Powers, R.G., 1986.  Update on the Use of Conductive Materials for Cathodic Protection of Steel in Concrete. NACE,Houston, USA :264.1-264.8. 

[4] Chajes, M.J., Thomson, T.A., Farschman, C.A., 1995. Durability of concrete beams externally reinforced with composite fabrics. Construction and Building Materials, 9(3):141-148. 


[5] Fam, A.Z., Rizkalla, S.H., 2001. Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes. ACI Structural Journal, 98(4):451-461. 

[6] Gadve, S., Mukherjee, A., Malhotra, S.N., 2009. Corrosion of steel reinforcements embedded in FRP wrapped concrete. Construction and Building Materials, 23(1):153-161. 


[7] Gu, W., Zhao, Y.H., 2007. Experimental study on concrete filled CFRP-steel tube columns with axial compression. China Civil Engineering Journal, (in Chinese),40(11):23-28. 

[8] Gu, W., Zhao, Y.H., Shang, D.W., 2006. Load carrying capacity of concrete filled CFRP-steel tubes under axial compression. Engineering Mechanics, (in Chinese),23(1):149-153. 

[9] Huang, Y.L., Hung, C.H., Yen, T., Wu, J.H., Lin, Y., 2005. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part II: Analytical study. Journal of Zhejiang University-SCIENCE A, 6(8):844-852. 


[10] Huang, Y.L., Wu, J.H., Yen, T., Hung, C.H., Lin, Y., 2005. Strengthening reinforced concrete beams using prestressed glass fiber-reinforced polymer-Part I: Experimental study. Journal of Zhejiang University-SCIENCE A, 6(3):166-174. 


[11] Lasa, I.R., Powers, R.G., Kessler, R.J., 1998. Practical Application of Cathodic Protection Systems for Reinforcing Steel Substructures in Marin Environment, Proceedings of the International Seminar on Repair and Rehabilitation of Reinforced Concrete Structures,:16-31. 

[12] Liang, Q.Q., Uy, B., 2000. Theoretical study on the post-local buckling of steel plates in concrete-filled box column. Computers & Structures, 75(5):479-490. 


[13] Mirmiran, A., Shahawy, M., 1996. A new concrete-filled hollow FRP composite column. Composites Part B: Engineering, 27(3-4):263-268. 


[14] Morino, S., 1998. Recent developments in hybrid structures in Japan—research, design and construction. Engineering Structures, 20(4-6):336-346. 


[15] Nishizaki, I., Meiarashi, S., 2002. Long-term deterioration of GFRP in water and moist environment. Journal of Composites for Construction, 6(1):21-27. 


[16] Roeder, C.W., Cameron, B., Brown, C.B., 1999. Composite action in concrete filled tubes. Journal of Structural Engineering, 125(5):477-484. 


[17] Schneider, S.P., 1998. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 124(10):1125-1138. 


[18] Shams, M., Saadeghvaziri, M.A., 1997. State of the art of concrete-filled steel tubular columns. ACI Structural Journal, 94(5):558-571. 

[19] Steckel, G.L., Hawkins, G.F., Bauer, J.L., 1998. Environmental Durability of Composites for Seismic Retrofit of Bridge Columns. Second International Conference on Composites in Infrastructure, Tucson, USA, 2:460-475. 

[20] Tao, Z., Yu, Q., 2006.  New Combing Structure. (in Chinese), Science Express,Beijing, China :366-382. 

[21] Uy, B., 1998. Local and post-local buckling of concrete filled steel welded box columns. Journal of Constructional Steel Research, 47(1-2):47-72. 


[22] Wang, Q.L., Zhao, Y.H., 2003. A presumption on the concrete filled CFRP-steel composite tube structures. Journal of Jilin University (Engineering and Technology Edition), (in Chinese),33(Suppl):352-355. 

[23] Wang, Q.L., Ye, M., Zhou, L., 2008. Study on the flexural behaviour of concrete filled circular CFRP-steel tubular members. China Civil Engineering Journal, (in Chinese),41(10):30-38. 

[24] Zhang, W.Z., Shahrooz, B.M., 1999. Comparison between ACI and AISC for concrete-filled tubular columns. Journal of Structural Engineering, 125(11):1213-1223. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE