Full Text:   <3112>

CLC number: TK51

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2013-10-12

Cited: 0

Clicked: 7272

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2013 Vol.14 No.11 P.822-834

http://doi.org/10.1631/jzus.A1300242


Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control*


Author(s):  Ying-tai Loong, Mahidzal Dahari, Hwa-jen Yap, Hue-yee Chong

Affiliation(s):  . Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia

Corresponding email(s):   loongyt@um.edu.my

Key Words:  Hydrogen energy, Solar energy, Hydrogen refueling facility, Fuzzy logic


Ying-tai Loong, Mahidzal Dahari, Hwa-jen Yap, Hue-yee Chong. Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control[J]. Journal of Zhejiang University Science A, 2013, 14(11): 822-834.

@article{title="Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control",
author="Ying-tai Loong, Mahidzal Dahari, Hwa-jen Yap, Hue-yee Chong",
journal="Journal of Zhejiang University Science A",
volume="14",
number="11",
pages="822-834",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300242"
}

%0 Journal Article
%T Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control
%A Ying-tai Loong
%A Mahidzal Dahari
%A Hwa-jen Yap
%A Hue-yee Chong
%J Journal of Zhejiang University SCIENCE A
%V 14
%N 11
%P 822-834
%@ 1673-565X
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300242

TY - JOUR
T1 - Development of a system configuration for a solar powered hydrogen facility using fuzzy logic control
A1 - Ying-tai Loong
A1 - Mahidzal Dahari
A1 - Hwa-jen Yap
A1 - Hue-yee Chong
J0 - Journal of Zhejiang University Science A
VL - 14
IS - 11
SP - 822
EP - 834
%@ 1673-565X
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300242


Abstract: 
solar energy is a natural resource which can be harnessed to provide clean electricity for hydrogen production systems. However, this technology is not widely used because of control issues, particularly for hydrogen refuelling stations. At present, direct or DC-DC converter couplings are the most common system configurations for hydrogen refuelling stations. However, these system configurations are costly and suffer from gas shortage at hydrogen refuelling stations. Furthermore, the hydrogen produced by such system configurations varies considerably depending on the levels of solar radiation. In order to address these issues, a new system configuration is proposed, incorporating the feedback signal of the storage level in the control system. The photovoltaic (PV) system, electrolyzer, and storage tank are integrated with a fuzzy logic controller (FLC) to determine the backup current compensation for electrolyzer operation in order to obtain the minimum power required for hydrogen production. The proposed FLC is constructed with three input variables which are the PV current, hydrogen storage level, and the battery state of charge. The rules-based fuzzy inference process is based on the proposed configuration which combines the advantages of direct and DC-DC converter coupling configurations. The simulation results show that the proposed configuration offers better adaptability to variable radiation conditions compared to other methods. This gives a more promising option for ensuring the adequacy of hydrogen supply at hydrogen refuelling stations.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abd El-Aal, A.E.M.M., 2005.  Modeling and Simulation of a Photovoltaic Fuel Cell Hybrid System. PhD Thesis, University of Kassel,Kassel, Germany :

[2] Ahmadi, P., Dincer, I., Rosen, M.A., 2013. Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. International Journal of Hydrogen Energy, 38(4):1795-1805. 


[3] Arriaga, L.G., Martinez, W., Cano, U., Blud, H., 2007. Direct coupling of a solar-hydrogen system in Mexico. International Journal of Hydrogen Energy, 32(13):2247-2252. 


[4] Barber, F., Veziroglu, T.N., 2010. Environmental Benefit of the Solar Hydrogen Energy System.  Technical Report, Clean Energy. Research Institute University of Miami, Coral Gables, FL 33124,USA :

[5] Barbir, F., 2005. PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 78(5):661-669. 


[6] Bilgen, E., 2001. Solar hydrogen from photovoltaic-electrolyzer systems. International Journal of Energy Conversion and Management, 42(9):1047-1057. 


[7] Bilgen, S., Kaygusuz, K., Sari, A., 2004. Renewable energy for a clean and sustainable future. Energy Sources, 26(12):1119-1129. 


[8] Bilodeau, A., Agbossou, K., 2006. Control analysis of renewable energy system with hydrogen storage for residential applications. Journal of Power Sources, 162(2):757-764. 


[9] Dincer, I., 2001. Environmental issues: Ii-potential solutions. Energy Sources, 23(1):83-92. 


[10] Đukić, A., Firak, M., 2011. Hydrogen production using alkaline electrolyzer and photovoltaic module. International Journal of Hydrogen Energy, 36(13):7799-7806. 


[11] Eren, Y., Erdinc, O., Gorgun, H., Uzunoglu, M., Vural, B., 2009. A fuzzy logic based supervisory controller for an FC/UC hybrid vehicular power system. International Journal of Hydrogen Energy, 34(20):8681-8694. 


[12] Esmaili, P., Dincer, I., Naterer, G.F., 2012. Energy and exergy analyses of electrolytic hydrogen production with molybdenum-oxo catalysts. International Journal of Hydrogen Energy, 37(9):7365-7372. 


[13] Gabriele, Z., Paolo, T., 2012.  Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy. Springer-Verlag Italia,Italy :

[14] Garciavalverde, R., Miguel, C., Martinezbejar, R., Urbina, A., 2008. Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter. International Journal of Hydrogen Energy, 33(20):5352-5362. 


[15] Gibson, T.L., Kelly, N.A., 2008. Optimization of solar powered hydropgen production using photovoltaic electrolysis devices. International Journal of Hydrogen Energy, 33(21):5931-5940. 


[16] Gorgun, H., 2006. Dynamic modelling of a proton exchange membrane (PEM) electrolyzer. International Journal of Hydrogen Energy, 31(1):29-38. 


[17] Ishaque, K., Salam, Z., 2011. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Solar Energy, 85(9):2349-2359. 


[18] Kelly, N.A., Gibson, T.L., Ouwerkerk, D.B., 2008. A solar-powered, high efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results. International Journal of Hydrogen Energy, 33(11):2747-2764. 


[19] Kelly, N.A., Gibson, T.L., Cai, M., Spearot, J.A., Ouwerkerk, D.B., 2010. Development of a renewable hydrogen economy: Optimization of existing technologies. International Journal of Hydrogen Energy, 35(3):892-899. 


[20] Kelly, N.A., Gibson, T.L., Ouwerkerk, D.B., 2011. Generation of high-pressure hydrogen for fuel cell electric vehicles using photovoltaic-powered water electrolysis. International Journal of Hydrogen Energy, 36(24):15803-15825. 


[21] Levene, J.I., Mann, M.K., Margolis, R.M., Milbrandt, A., 2007. An analysis of hydrogen production from renewable electricity sources. Solar Energy, 81(6):773-780. 


[22] Liu, Z., Qiu, Z., Luo, Y., Mao, Z., Wang, C., 2010. Operation of first solar-hydrogen system in China. International Journal of Hydrogen Energy, 35(7):2762-2766. 


[23] Loong, Y.T., Dajari, M., Yap, H.J., Chong, H.Y., 2013. Modeling and simulation of solar powered hydrogen system. Applied Mechanics and Materials, 315:128-135. 


[24] Paul, B., Andrews, J., 2008. Optimal coupling of PV arrays to PEM electrolysers in solar-hydrogen systems for remote area power supply. International Journal of Hydrogen Energy, 33(2):490-498. 


[25] Ramos Hernanz, J., Campayo Martn, J.J., Zamora Belver, I., 2010. Modelling of Photovoltaic Module. , International Conference on Renewable Energies and Power Quality, Granada, Spain, :

[26] Rathore, N.S., Panwar, N.L., 2007.  Renewable Energy Sources for Sustainable Development. New India Publishing Agency,New Delhi :

[27] Sakhare, A., Davari, A., Feliachi, A., 2004. Fuzzy logic control of fuel cell for stand-alone and grid connection. Journal of Power Sources, 135(1-2):165-176. 


[28] Stewart, E.M., Lutz, A.E., Schoenung, S., Chiesa, M., Keller, J.O., Fletcher, J., Ault, G., McDonald, J., Cruden, A., 2009. Modeling, analysis and control system development for the Italian hydrogen house. International Journal of Hydrogen Energy, 34(4):1638-1646. 


[29] Uzunoglu, M., Onar, O.C., Alam, M.S., 2009. Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications. Renewable Energy, 34(3):509-520. 


[30] Veziroğlu, T.N., Kakac, S., 1977. Solar production of hydrogen. Solar Energy Engineering, :385-395. 

[31] Wang, C., 2006.  Modeling and Control of Hybrid Wind/Photovoltaic/Fuel Cell Distributed Generation Systems. PhD Thesis, Montana State University,Bozeman, USA :

[32] Xiao, W.P., Cheng, Y., Lee, W.J., Chen, V., Charoensri, S., 2011. Hydrogen filling station design for fuel cell vehicles. IEEE Transactions on Industry Applications, 47(1):245-251. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE