Full Text:   <3660>

Summary:  <2282>

CLC number: V21

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-02-20

Cited: 5

Clicked: 7775

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.3 P.185-196

http://doi.org/10.1631/jzus.A1300341


Numerical simulation of aerodynamic heating and stresses of chemical vapor deposition ZnS for hypersonic vehicles*


Author(s):  Yuan-chun Liu1, Yu-rong He1, Jia-qi Zhu2, Jie-cai Han2, Dong-liang Quan3

Affiliation(s):  1. School of Energy Science & Engineering, Harbin Institute of Technology, Harbin 150001, China; more

Corresponding email(s):   rong@hit.edu.cn

Key Words:  Chemical vapor deposition (CVD) ZnS, Infrared window material, Thermal and stress responses, Hypersonic vehicles


Yuan-chun Liu, Yu-rong He, Jia-qi Zhu, Jie-cai Han, Dong-liang Quan. Numerical simulation of aerodynamic heating and stresses of chemical vapor deposition ZnS for hypersonic vehicles[J]. Journal of Zhejiang University Science A, 2014, 15(3): 185-196.

@article{title="Numerical simulation of aerodynamic heating and stresses of chemical vapor deposition ZnS for hypersonic vehicles",
author="Yuan-chun Liu, Yu-rong He, Jia-qi Zhu, Jie-cai Han, Dong-liang Quan",
journal="Journal of Zhejiang University Science A",
volume="15",
number="3",
pages="185-196",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1300341"
}

%0 Journal Article
%T Numerical simulation of aerodynamic heating and stresses of chemical vapor deposition ZnS for hypersonic vehicles
%A Yuan-chun Liu
%A Yu-rong He
%A Jia-qi Zhu
%A Jie-cai Han
%A Dong-liang Quan
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 3
%P 185-196
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300341

TY - JOUR
T1 - Numerical simulation of aerodynamic heating and stresses of chemical vapor deposition ZnS for hypersonic vehicles
A1 - Yuan-chun Liu
A1 - Yu-rong He
A1 - Jia-qi Zhu
A1 - Jie-cai Han
A1 - Dong-liang Quan
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 3
SP - 185
EP - 196
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300341


Abstract: 
hypersonic vehicles subjected to strong aerodynamic forces and serious aerodynamic heating require more stringent design for an infrared window. In this paper, a finite element analysis is used to present the distributions of thermal and stress fields in the infrared window for hypersonic vehicles based on flowfield studies. A theoretical guidance is provided to evaluate the influence of aerodynamic heating and forces on infrared window materials. The aerodynamic heat flux from Mach 3 to Mach 6 flight at an altitude of 15 km in a standard atmosphere is obtained through flowfield analysis. The thermal and stress responses are then investigated under constant heat transfer coefficient boundary conditions for different Mach numbers. The numerical results show that the maximum stress is higher than the material strength at Mach 6, which means a failure of the material may occur. The maximum stress and temperatures are lower than the material strength and melting point under other conditions, so the material is safe.

高速飞行器化学气相沉积ZnS窗口材料气动热和应力数值模拟研究

研究目的:基于飞行器外流场的分析,计算窗口材料的温度场和应力场。
创新要点:1.通过流场分析,得到窗口处热流密度和换热系数;2.通过热-结构分析,得到窗口的温度场和应力场;3.为窗口材料的气动力和气动热的材料破坏提供理论依据。
研究方法:1.计算标准大气情况下,高度为15 km、马赫数分别为3、4、5和6时飞行器的流场;2.根据流场分析得到数据,用有限元法计算红外窗口的热-结构场。
重要结论:1.当马赫数为6时,材料的最大应力高于材料的强度,材料失效;2.当马赫数为3、4和5时,材料的最大温度和最大应力均低于安全值,材料符合条件。

关键词:化学气相沉淀(CVD)ZnS;红外窗口;气动热;热应力;超声速飞行器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Carrera, E., Giunta, G., 2008. Hierarchical models for failure analysis of plates bent by distributed and localized transverse loadings. Journal of Zhejiang University-SCIENCE A, 9(5):600-613. 


[2] Culler, A.J., McNamara, J.J., 2010. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow. AIAA Journal, 48(8):1721-1738. 


[3] Di Clemente, M., Rufolo, G., Battista, F., 2007. An extrapolation from flight methodology for a re-entry vehicle wing leading edge test in a plasma wind tunnel facility. , Proceedings of 39th AIAA Thermophysics Conference, AIAA 2007-3895, Miami, FL, :


[4] Di Clemente, M., Marini, M., Di Benedetto, S., 2009. Numerical prediction of aerothermodynamic effects on a re-entry vehicle body flap configuration. Acta Astronautica, 65(1-2):221-239. 


[5] Di Clemente, M., Rufolo, G., Ianiro, A., 2013. Hypersonic test analysis by means of aerothermal coupling methodology and infrared thermography. AIAA Journal, 51(7):1755-1769. 


[6] Gerdroodbary, M.B., Hosseinalipour, S.M., 2010. Numerical simulation of hypersonic flow over highly blunted cones with spike. Acta Astronautica, 67(1-2):180-193. 


[7] Gnemmi, P., Srulijes, J., Roussel, K., 2003. Flowfield around spike-tipped bodies for high attack angles at Mach 4.5. Journal of Spacecraft and Rockets, 40(5):622-631. 


[8] Harris, D.C., 1995. Frontiers in infrared window and dome materials. , Proceedings of SPIE 2552, Infrared Technology XXI, San Diego, CA, 325-335. :325-335. 


[9] Harris, D.C., Boronowski, M., Henneman, L., 2008. Thermal, structural, and optical properties of Cleartran multispectral zinc sulfide. Optical Engineering, 47(11):114001-114011. 


[10] Heubner, L.D., Mitchell, A.M., Boudreaux, E.J., 1995. Experimental results on the feasibility of an aerospike for hypersonic missiles. , 33rd Aerospace Sciences Meeting and Exhibit, AIAA 95-0737, Reno, NV, :


[11] Jain, A.C., Hayes, J.R., 2004. Hypersonic pressure, skin-friction, and heat transfer distributions on space vehicles: planar bodies. AIAA Journal, 42(10):2060-2069. 


[12] Jin, Z.J., Jiang, C.H., Wan, X.P., 2010. Plastic limit load analysis for pressure pipe with incomplete welding defects based on the extended Net Section Collapse Criteria. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(6):440-448. 


[13] Ma, T., Chen, Y., Zeng, M., 2012. Stress analysis of internally finned bayonet tube in a high temperature heat exchanger. Applied Thermal Engineering, 43(101-108):101-108. 


[14] Marini, M., Di Benedetto, S., Rufolo, G., 2007. Test design methodologies for flight relevant plasma wind tunnel experiments. , Proceedings of West-east High Speed Flow Field Conference, Russian Academy of Science, Moscow, Russia, 1-37. :1-37. 

[15] Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598-1605. 


[16] Muylaert, J., Walpot, L., Hauser, J., 1992. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight. , AIAA 17th Aerospace Ground Testing Conference, AIAA 92-3905, Nashville, TN, 1-16. :1-16. 


[17] Ruan, J.L., Feng, X., Zhang, G.B., 2010. Dynamic thermoelastic analysis of a slab using finite integral transformation method. AIAA Journal, 48(8):1833-1839. 


[18] Russell, G., Stephen, C., Jones, M., 2003. Army hypersonic compact kinetic energy missile laser window design. , Window and Dome Technologies VIII, Proceedings of SPIE 5078, 28-39. :28-39. 


[19] Saravanan, S., Jagadeesh, G., Reddy, K.P.J., 2009. Investigation of missile-shaped body with forward-facing cavity at Mach 8. Journal of Spacecraft and Rockets, 46(3):577-591. 


[20] Shahmardan, M.M., Norouzi, M., Kayhani, M.H., 2012. An exact analytical solution for convective heat transfer in rectangular ducts. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(10):768-781. 


[21] Sun, M., Wu, J.H., 2003. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Journal of Experimental Biology, 206(17):3065-3083. 


[22] Tang, K., Yu, J., Jin, T., 2013. Influence of compression-expansion effect on oscillating-flow heat transfer in a finned heat exchanger. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):427-434. 


[23] Tropf, W.J., Thomas, M.E., Klocek, P., 1996. Infrared optical materials. , Proceedings of SPIE CR64, Inorganic Optical Materials, 137-169. :137-169. 


[24] White, J.T., 1993. Application of Navier-Stokes flowfield analysis to the aerothermodynamic design of an aerospike-configured missile. , AIAA/AHS/ASEE Aerospace Design Conference, Irvine, CA, :

[25] Ying, J., Lv, C.F., Lim, C.W., 2009. 3D thermoelasticity solutions for functionally graded thick plates. Journal of Zhejiang University-SCIENCE A, 10(3):327-336. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE