Full Text:   <4109>

Summary:  <2530>

CLC number: U270.1+1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-26

Cited: 9

Clicked: 11202

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.9 P.694-710

http://doi.org/10.1631/jzus.A1400062


Study on the safety of operating high-speed railway vehicles subjected to crosswinds*


Author(s):  Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin

Affiliation(s):  . State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Corresponding email(s):   xsjin@home.swjtu.edu.cn

Key Words:  High-speed railway, High-speed train, Crosswinds, Safety boundary, Derailment


Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin. Study on the safety of operating high-speed railway vehicles subjected to crosswinds[J]. Journal of Zhejiang University Science A, 2014, 15(9): 694-710.

@article{title="Study on the safety of operating high-speed railway vehicles subjected to crosswinds",
author="Xin-biao Xiao, Liang Ling, Jia-yang Xiong, Li Zhou, Xue-song Jin",
journal="Journal of Zhejiang University Science A",
volume="15",
number="9",
pages="694-710",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400062"
}

%0 Journal Article
%T Study on the safety of operating high-speed railway vehicles subjected to crosswinds
%A Xin-biao Xiao
%A Liang Ling
%A Jia-yang Xiong
%A Li Zhou
%A Xue-song Jin
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 9
%P 694-710
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400062

TY - JOUR
T1 - Study on the safety of operating high-speed railway vehicles subjected to crosswinds
A1 - Xin-biao Xiao
A1 - Liang Ling
A1 - Jia-yang Xiong
A1 - Li Zhou
A1 - Xue-song Jin
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 9
SP - 694
EP - 710
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400062


Abstract: 
A coupled vehicle-track dynamic model is put forward for use in investigating the safety effects of crosswinds on the operation of a high-speed railway vehicle. In this model, the vehicle is modeled as a nonlinear multi-body system, and the ballasted track is modeled as a three-layer discrete elastic support system. The steady aerodynamic forces caused by crosswinds are modeled as ramp-shaped external forces being exerted on the vehicle body. This model was used in a numerical analysis of the dynamic response and dynamic derailment mechanisms of high-speed vehicles subjected to strong crosswinds. The effects of the crosswind speeds, crosswind attack angle, and vehicle speed on the operational safety of the vehicle were examined. The operational safety boundaries of a high-speed vehicle subjected to crosswinds were determined. The numerical results obtained indicate that crosswinds at attack angles of 75° to 90° with respect to the forward direction of the vehicle have a great influence on the safety of operating high-speed railway vehicles. The wheelset unloading limit, which determines the position of the warning boundary dividing the safe operating area and the warning area, is the most conservative, i.e., the safest, criterion to use in assessing the high-speed operational safety of vehicles in crosswinds.

高速铁道车辆风致安全性研究

研究目的:随着世界高速铁路网的不断扩张,高速列车的风致安全性成为高速铁路系统中的关键科学问题之一。本文利用车辆-轨道耦合动力学理论分析方法,确定强横风作用下高速铁道车辆的安全运行区域,为强风地带高速列车的安全控制提供依据。
创新要点:首次提出了考虑多种影响因素和脱轨评价指标的高速列车脱轨安全域分析方法,并运用到了高速铁道车辆风致安全性研究中。
研究方法:基于车辆-轨道耦合动态响应及多种安全性评价指标得到横风作用下高速铁道车辆的安全运行区域和脱轨区域。
重要结论:铁道车辆安全性评价指标中,轮重减载率对横风激励最为敏感,其确定了强风作用下高速车辆安全运行区域的边界。
高速铁路;高速列车;横风;安全边界;脱轨

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Baker, C., Calleja, F., Jones, J., 2004. Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics, 92(7-8):547-563. 


[2] Baker, C., Cheli, F., Orellano, A., 2009. Cross wind effects on road and rail vehicles. Vehicle System Dynamics, 47(8):983-1022. 


[3] Carrarini, A., 2006.  Reliability Based Analysis of the Crosswind Stability of Railway Vehicles. PhD Thesis, Berlin Institute of Technology,Berlin, Germany :

[4] CEN (European Committee for Standardization), 2010. Railway applications aerodynamics-part 6: requirements and test procedures for cross wind assessment. EN 14067-6:2010, Available from http://www.railwayvehiclestandards.com/csn-en-14067-6-railway-applications-aerodynamics-part-6-requirements-and-test-procedures-for-cross-wind-assessment/,:

[5] Cheli, F., Belforte, P., Melzi, S., 2006. Numerical-experimental approach for evaluating cross-wind aerodynamic effects on heavy vehicles. Vehicle System Dynamics, 44(sup1):791-804. 


[6] Cheli, F., Ripamonti, F., Rocchi, D., 2010. Aerodynamic behaviour investigation of the new EMUV250 train to cross wind using wind tunnel tests and CFD analysis. Journal of Wind Engineering and Industrial Aerodynamics, 98(4-5):189-201. 


[7] Chen, G., Zhai, W.M., 2004. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics, 41(4):301-322. 


[8] Diedrichs, B., 2005.  Computational Methods for Crosswind Stability of Railway Trains: A Literature Survey. Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology,Stockholm, Sweden :26-36. 

[9] Evans, A.W., 2011. Fatal train accidents on Europe’s railways: 1980–2009. Accident Analysis & Prevention, 43(1):391-401. 


[10] Fujii, T., Maeda, T., Ishida, H., 1999. Wind induced accidents of train vehicles and their measures in Japan. Quarterly Report of RTRI, 40(1):50-55. 


[11] Gawthorpe, R.G., 1994. Wind effects on ground transportation. Journal of Wind Engineering and Industrial Aerodynamics, 52:73-92. 


[12] Jin, X.S., Xiao, X.B., Ling, L., 2013. Study on safety boundary for high-speed trains running in severe environments. International Journal of Rail Transportation, 1(1-2):87-108. 


[13] Kalker, J.J., 1967.  On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction. PhD Thesis, Delft University,the Netherlands :

[14] Knothe, K., Grassie, S.L., 1993. Modeling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics, 22(3-4):209-262. 


[15] Ling, L., Xiao, X.B., Jin, X.S., 2012. Study on derailment mechanism and safety operation area of high speed trains under earthquake. Journal of Computational and Nonlinear Dynamics, 7(4):041001


[16] Nadal, M.J., 1896. Theorie de stabilit’e des Locomotives, part 2, Mouvement de Lacet. Annales des Mines 10, (in French),:232

[17] OJEU (Official Journal of the European Union), 2008. Technical specification for interoperability of high speed rolling stock. TSI/HS-RST-L64-7/3/2008:2008, Available from http://www.era.europa.eu/Document-Register/Pages/HS-RST-TSI.aspx,:

[18] Orellano, A., Schober, M., 2003. On side-wind stability of high-speed trains. Vehicle System Dynamics, 40(sup):143-160. 

[19] RSSB (Rail Safety and Standards Board), 2000. Resistance of railway vehicles to roll-over in gales. GM/RT2142:2000, Available from http://www.rgsonline.co.uk/Railway_Group_Standards/RollingStock/RailwayGroupStandards,:

[20] Shen, Z.Y., Hedrick, J.K., Elkins, J.A., 1983. A comparison of alternative creep-force models for rail vehicle dynamic analysis. Vehicle System Dynamics, 12(1-3):79-83. 


[21] Silla, A., Kallberg, V.P., 2012. The development of railway safety in Finland. Accident Analysis & Prevention, 45:737-744. 


[22] Weinstock, H., 1984. Wheel climb derailment criteria for evaluation of rail vehicle safety. , Proceedings of the ASME Winter Annual Meeting, New York, USA, 1-7. :1-7. 

[23] Wilson, N., Fries, R., Witte, M., 2011. Assessment of safety against derailment using simulations and vehicle acceptance tests: a worldwide comparison of state-of-the-art assessment methods. Vehicle System Dynamics, 49(7):1113-1157. 


[24] Wu, H., Wilson, N., 2006. Railway vehicle derailment and prevention.  Handbook of Railway Vehicle Dynamics. Taylor & Francis,London, UK :209-238. 

[25] Xiao, X.B., Jin, X.S., Deng, Y.Q., 2008. Effect of curved track support failure on vehicle derailment. Vehicle System Dynamics, 46(11):1029-1059. 


[26] Xiao, X.B., Jin, X.S., Wen, Z.F., 2011. Effect of tangent track buckle on vehicle derailment. Multibody System Dynamics, 25(1):1-41. 


[27] Xinhua News Agency, 2007. Train overturned by strong wind in NW China. China Daily, Feb. 28, :

[28] Xu, Y.L., Ding, Q.S., 2006. Interaction of railway vehicles with track in cross-winds. Journal of Fluids and Structures, 22(3):295-314. 


[29] Yokose, K., 1966. A theory of the derailment of a wheelset. Quarterly Report of RTRI, 7(3):30-34. 

[30] Zhai, W.M., Cai, C.B., Guo, S.Z., 1996. Coupling model of vertical and lateral vehicle/track interactions. Vehicle System Dynamics, 26(1):61-79. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE