Full Text:   <2832>

Summary:  <2096>

CLC number: TU393.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-09-25

Cited: 1

Clicked: 8292

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.10 P.813-828

http://doi.org/10.1631/jzus.A1400080


Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures*


Author(s):  Wu-jun Chen, Jin-yu Zhou, Jun-zhao Zhao

Affiliation(s):  . Space Structures Research Center, Shanghai Jiao Tong University, Shanghai 200030, China

Corresponding email(s):   zjysjtu@sjtu.edu.cn

Key Words:  Tensile cable-net structure, Zero-stress state, Pre-stress state, Pre-stress release analysis, Pre-tensioning development analysis, Form finding, Inverse problem


Wu-jun Chen, Jin-yu Zhou, Jun-zhao Zhao. Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures[J]. Journal of Zhejiang University Science A, 2014, 15(10): 813-828.

@article{title="Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures",
author="Wu-jun Chen, Jin-yu Zhou, Jun-zhao Zhao",
journal="Journal of Zhejiang University Science A",
volume="15",
number="10",
pages="813-828",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400080"
}

%0 Journal Article
%T Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures
%A Wu-jun Chen
%A Jin-yu Zhou
%A Jun-zhao Zhao
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 10
%P 813-828
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400080

TY - JOUR
T1 - Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures
A1 - Wu-jun Chen
A1 - Jin-yu Zhou
A1 - Jun-zhao Zhao
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 10
SP - 813
EP - 828
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400080


Abstract: 
This paper proposes an extended design concept and mechanical description for cable-net structures, including 10 states and 15 procedures which are defined according to their physical nature and analytical capabilities. In the pre-stress release analysis, an iterative computational method is developed for the inverse evaluation from the equilibrium state to the zero-stress state, which adopts the least norm least square approach (LNLS) to the compatibility equation because of the indeterminate property of a cable-net structure. In the pre-tensioning development analysis, another iterative computational method is developed for the positive problem from the zero-stress state to the actual pre-stress state by moving the boundary joints, in which the explicit governing equations are formulated based on the particular energy function and a feasible self-stress mode is adopted to avoid the singularity of the initial stiffness matrix. To implement these methods, Matlab algorithms are developed and two examples are investigated. By comparing the results of the iterative method with those of the dynamic relaxation method, this study determines that they are comparable with each other, which validates the efficiency and accuracy of these iterative methods.

张力索网结构零应力态与预应力态计算方法

研究目的:减小张力索网结构所求实际预应力与预期预应力之间的差异,并更完善地描述结构力学行为。
创新要点:提出张力索网结构全过程分析概念,并用10个状态描述了其物理或分析的状态,以及15个过程揭示了状态间内在的逻辑关系和力学分析理论;在应力释放分析中,采用逆分析法提出了一种用于求解合理零应力状态的迭代计算方法;在预应力成形分析中,为获取预应力状态建立了另一种迭代计算方法。
研究方法:应力释放分析主要包括四个步骤:构件无应力长度及伸长量计算,最小范数最小二乘法,数值迭代方法,和执行程序(图4);预应力成形分析在能量方程的基础上提出了控制方程的显式表达式,并为避免初始刚度矩阵的奇异问题而采用了合理自应力模态(图5)。
重要结论:比较本文提出的计算方法与动力松弛法得到的零应力态,发现结果吻合良好,证明计算过程收敛性良好且结果准确。在预应力成形分析中,采用本文迭代方法可以有效消除所求实际预应力与预期预应力之间的差异。此外,提出的所有计算方法都符合模块化流程,具有广泛适用性。
张拉索网结构;零应力态;预应力态;预应力释放分析;预应力成形分析;找形分析;逆问题

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Argyris, J.H., Scharpf, D.W., 1972. Large deflection analysis of prestressed networks. Journal of the Structural Division, 98(3):633-654. 

[2] Argyris, J.H., Angelopoulos, T., Bichat, B., 1974. A general method for the shape finding of lightweight tension structures. Computer Methods in Applied Mechanics and Engineering, 3(1):135-149. 


[3] Ashwear, N., Eriksson, A., 2014. Natural frequencies describe the pre-stress in tensegrity structures. Computers & Structures, 138:162-171. 


[4] Barnes, M., 1994. Form and stress engineering of tension structures. Structural Engineering Review, 6(3):

[5] Blanco-Fernandez, E., Castro-Fresno, D., Del Coz Diaz, J.J., 2011. Flexible systems anchored to the ground for slope stabilisation: critical review of existing design methods. Engineering Geology, 122(3-4):129-145. 


[6] Blanco-Fernandez, E., Castro-Fresno, D., Del Coz Daz, J., 2013. Field measurements of anchored flexible systems for slope stabilisation: evidence of passive behaviour. Engineering Geology, 153:95-104. 


[7] Bletzinger, K.U., Ramm, E., 1999. A general finite element approach to the form finding of tensile structures by the updated reference strategy. International Journal of Space Structures, 14(2):131-145. 


[8] Bletzinger, K.U., Linhard, J., Wchner, R., 2010. Advanced numerical methods for the form finding and patterning of membrane structures. New Trends in Thin Structures: Formulation, Optimization and Coupled Problems, Springer,:133-154. 

[9] Calladine, C., Pellegrino, S., 1991. First-order infinitesimal mechanisms. International Journal of Solids and Structures, 27(4):505-515. 


[10] Castro-Fresno, D., Del Coz Diaz, J., Lpez, L., 2008. Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation. Engineering Geology, 100(1-2):1-10. 


[11] Chen, W.J., Zhang, L.M., 2008. Approximated zero-stress state based on structural analysis procedures for the cable structures. , International Symposium on Advances in Mechanics, Materials and Structures, Zhejiang University, Hangzhou, China, :

[12] Chen, W.J., Zhang, L.M., 2011. Elastified procedure for the form-found equilibrium state and zero-stress state of cable-net structure. Journal of Shanghai Jiao Tong University, (in Chinese),(45):523-527. 

[13] Day, A., Bunce, J., 1970. Analysis of cable networks by dynamic relaxation. Civil Engineering Public Works Review, 4:383-386. 

[14] Del Coz Diaz, J.J., Nieto, P.G., Fresno, D.C., 2009. Non-linear analysis of cable networks by FEM and experimental validation. International Journal of Computer Mathematics, 86(2):301-313. 


[15] Eriksson, A., Tibert, A.G., 2006. Redundant and force-differentiated systems in engineering and nature. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5437-5453. 


[16] Grndig, L., Moncrieff, E., Singer, P., 2000. A history of the principal developments and applications of the force density method in Germany 1970–1999. , Fourth IASS-IACM International Colloquium on Computation of Shell & Spatial Structures, Chania-Crete, Greece, 1-13. :1-13. 

[17] Haber, R., Abel, J., 1982. Initial equilibrium solution methods for cable reinforced membranes part II—implementation. Computer Methods in Applied Mechanics and Engineering, 30(3):285-306. 


[18] Lewis, W., Jones, M., Rushton, K., 1984. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs. Computers & Structures, 18(6):989-997. 


[19] Linkwitz, K., Grutndig, L., 1987. Strategies of form finding and design and construction of cutting patterns for large sensitive membrane structures. , International Conference on the Design and Construction of Non-conventional Structures, 315-321. :315-321. 

[20] Nashed, M.Z., 1976. Generalized Inverses and Applications: Proceedings of an Advanced Seminar, Academic Press,1973:

[21] Schek, H.J., 1974. The force density method for form finding and computation of general networks. Computer Methods in Applied Mechanics and Engineering, 3(1):115-134. 


[22] Strbel, D., 1997. Die Anwendung der Ausgleichungs rechnung auf elastomechanische Systeme, (in Germany), Beck :

[23] Vassart, N., Laporte, R., Motro, R., 2000. Determination of mechanism’s order for kinematically and statically indetermined systems. International Journal of Solids and Structures, 37(28):3807-3839. 


[24] Wagner, R., 2005. On the design process of tensile structures. Textile Composites and Inflatable Structures, Springer,:1-16. 

[25] Zhao, J.Z., Chen, W.J., Fu, G.Y., 2012. Computation method of zero-stress state of pneumatic stressed membrane structure. Science China Technological Sciences, (in Chinese),55(3):717-724. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE