Full Text:   <3394>

Summary:  <2344>

CLC number: U461.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-08-22

Cited: 5

Clicked: 10924

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.9 P.681-693

http://doi.org/10.1631/jzus.A1400101


A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle*


Author(s):  Pan Song1,2, Chang-fu Zong1, Masayoshi Tomizuka2

Affiliation(s):  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China; more

Corresponding email(s):   zongcf@jlu.edu.cn

Key Words:  Vehicle dynamics, Integrated control, Driver model, Sliding mode control, Control allocation


Share this article to: More |Next Article >>>

Pan Song, Chang-fu Zong, Masayoshi Tomizuka. A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle[J]. Journal of Zhejiang University Science A, 2014, 15(9): 681-693.

@article{title="A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle",
author="Pan Song, Chang-fu Zong, Masayoshi Tomizuka",
journal="Journal of Zhejiang University Science A",
volume="15",
number="9",
pages="681-693",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400101"
}

%0 Journal Article
%T A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle
%A Pan Song
%A Chang-fu Zong
%A Masayoshi Tomizuka
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 9
%P 681-693
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400101

TY - JOUR
T1 - A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle
A1 - Pan Song
A1 - Chang-fu Zong
A1 - Masayoshi Tomizuka
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 9
SP - 681
EP - 693
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400101


Abstract: 
This paper presents a torque distribution method for an individual-wheel drive vehicle, in which each wheel is controlled individually by its own electric motor. The terminal sliding mode technique is employed for the motion control so as to track the desired vehicle motion obtained by interpreting the driver’s commands. Thus, finite-time convergence of the system’s dynamic errors can be achieved on the terminal sliding manifolds, as compared to the well-used linear sliding surface. By considering nonlinear constraints of the tire adhesive limits, a simple yet effective distribution strategy is introduced to allocate the motion control efforts to each of the four wheels. Through the use of a high-fidelity CarSim full-vehicle model, vehicle stability and handling performance of the proposed controller is evaluated in both open- and closed-loop simulations.

基于终端滑模控制的四轮独立驱动汽车转矩分配方法

研究目的:四轮独立驱动汽车四个车轮的电机转矩可以正、反向输出,有必要对其底盘集成控制系统进行针对性设计以保证各车轮间的协调运作。集成控制系统一般可以分为上层运动控制器和下层力分配器。对于运动控制器的设计,同类研究一般采用滑模控制方法来处理汽车运动的非线性特征,其中终端滑模控制因具有高的稳态精度和有限时间收敛的特点而成为研究热点。对于力分配器的设计,通常方法不能在保证运算效率的同时考虑到执行器的约束,从而很难应用于实际。本文采用终端滑模控制方法来设计运动控制器,通过分析驾驶员操作行为从而更好地追踪理想的车辆运动目标;并提出一种简单有效的转矩分配控制策略,通过考虑轮胎附着极限从而将运动总力分配至四个车轮上。
创新要点:本文创新性地将终端滑模控制应用到底盘集成控制系统以实现车辆纵向、侧向及横摆运动的联合控制;本文提出了一种新颖的转矩分配控制策略,将复杂的有约束控制分配问题分解至若干个简单的无约束分配子问题。
研究方法:本文采用分层式协调控制方案(图1),应用非奇异和全局快速终端滑模控制方法设计运动控制器,提出一种基于伪逆矩阵的有约束转矩分配策略,应用驾驶员最优预瞄加速度模型来描述和分析人-车闭环系统的运动响应,通过MATLAB/Simulink和CarSim的联合仿真对所设计的四轮独立驱动汽车转矩分配方法进行对比验证。所设定的三个仿真工况包括:开环方向盘角阶跃输入(图6、7及表2)、闭环双移线工况(图8-10)和闭环对开路面制动(图11-15),分别用以测试车辆横摆、侧向及纵向方向上的动力学响应。
重要结论:本文提出的基于终端滑模控制的四轮独立驱动汽车转矩分配方法将车辆的稳态转向特性由不足转向转变为中性转向,驾驶员从而能更容易地操纵车辆而不需要对汽车的非线性响应做出额外的转向补偿。与此同时,该分配方法在不影响车辆侧向稳定性的前提下可以准确地响应驾驶员的加速/制动意图。仿真结果表明终端滑模控制器相比传统滑模控制方法在车辆纵向、侧向、横摆方向上的运动控制效果均有一定程度地提高,而有约束的力分配器更可以明显地提高车辆的操纵性和稳定性。综合评价表明,所提出的基于终端滑模控制的四轮独立驱动汽车转矩分配方法获得了最佳的控制性能,符合设计要求。
汽车动力学;底盘集成控制;驾驶员模型;终端滑模控制;控制分配

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Chen, Y., Wang, J., 2011. Energy-efficient control allocation with applications on planar motion control of electric ground vehicles. , American Control Conference, 2719-2724. :2719-2724. 


[2] Feng, Y., Yu, X., Man, Z., 2002. Non-singular terminal sliding mode control of rigid manipulators. Automatica, 38(12):2159-2167. 


[3] Guo, K., Guan, H., 1993. Modelling of driver/vehicle directional control system. Vehicle System Dynamics, 22(3-4):141-184. 


[4] Hori, Y., 2004. Future vehicle driven by electricity and control-research on four-wheel-motored “UOT Electric March II”. IEEE Transactions on Industrial Electronics, 51(5):954-962. 


[5] Johansen, T.A., Fossen, T.I., 2013. Control allocation—A survey. Automatica, 49(5):1087-1103. 


[6] Kim, D.J., Park, K.H., Bien, Z., 2007. Hierarchical longitudinal controller for rear-end collision avoidance. IEEE Transactions on Industrial Electronics, 54(2):805-817. 


[7] Li, D., Du, S., Yu, F., 2008. Integrated vehicle chassis control based on direct yaw moment, active steering and active stabiliser. Vehicle System Dynamics, 46(S1):341-351. 


[8] Liu, J., Wang, X., 2012. Advanced Sliding Mode Control for Mechanical Systems, Springer,:

[9] Mitschke, M., Wallentowitz, H., 1972.  Dynamik der kraftfahrzeuge. Springer,Berlin :

[10] Mokhiamar, O., Abe, M., 2004. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control. Journal of Dynamic Systems, Measurement, and Control, 126(4):753-763. 


[11] Na, X., Cole, D.J., 2013. Linear quadratic game and non-cooperative predictive methods for potential application to modelling driver–AFS interactive steering control. Vehicle System Dynamics, 51(2):165-198. 


[12] Ono, E., Hattori, Y., Muragishi, Y., 2006. Vehicle dynamics integrated control for four-wheel-distributed steering and four-wheel-distributed traction/braking systems. Vehicle System Dynamics, 44(2):139-151. 


[13] Park, K.B., Tsuji, T., 1999. Terminal sliding mode control of second-order nonlinear uncertain systems. International Journal of Robust and Nonlinear Control, 9(11):769-780. 


[14] Ren, D., Zhang, J., Zhang, J., 2011. Trajectory planning and yaw rate tracking control for lane changing of intelligent vehicle on curved road. Science China Technological Sciences, 54(3):630-642. 


[15] Sakai, S.I., Sado, H., Hori, Y., 2002. Dynamic driving/braking force distribution in electric vehicles with independently driven four wheels. Electrical Engineering in Japan, 138(1):79-89. 


[16] Wang, J., Longoria, R.G., 2009. Coordinated and reconfigurable vehicle dynamics control. IEEE Transactions on Control Systems Technology, 17(3):723-732. 


[17] Weiskircher, T., Mller, S., 2012. Control performance of a road vehicle with four independent single-wheel electric motors and steer-by-wire system. Vehicle System Dynamics, 50(sup1):53-69. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE