Full Text:   <1023>

Summary:  <97>

CLC number: 

On-line Access: 2022-03-18

Received: 2021-07-29

Revision Accepted: 2021-10-18

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2141

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Huang

https://orcid.org/0000-0001-9805-985X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2022 Vol.23 No.3 P.188-207

http://doi.org/10.1631/jzus.A2100362


Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle


Author(s):  Kai AN, Zhen-yun GUO, Wei HUANG, Xiao-ping XU

Affiliation(s):  Science and Technology on Scramjet Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China; more

Corresponding email(s):   gladrain2001@163.com

Key Words:  Predictor-corrector guidance, Drag tracking, Sliding mode control (SMC), Super twisting control


Kai AN, Zhen-yun GUO, Wei HUANG, Xiao-ping XU. Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle[J]. Journal of Zhejiang University Science A, 2022, 23(3): 188-207.

@article{title="Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle",
author="Kai AN, Zhen-yun GUO, Wei HUANG, Xiao-ping XU",
journal="Journal of Zhejiang University Science A",
volume="23",
number="3",
pages="188-207",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100362"
}

%0 Journal Article
%T Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle
%A Kai AN
%A Zhen-yun GUO
%A Wei HUANG
%A Xiao-ping XU
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 3
%P 188-207
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100362

TY - JOUR
T1 - Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle
A1 - Kai AN
A1 - Zhen-yun GUO
A1 - Wei HUANG
A1 - Xiao-ping XU
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 3
SP - 188
EP - 207
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100362


Abstract: 
The aim of this study was to develop robust tracking control schemes for the 3D leap trajectory of hypersonic gliding vehicles using sliding mode theory. A predictor-corrector guidance method was applied to the generation of the reference trajectory, and drag acceleration was selected as the profile of reference tracking. A combined super-twisting sliding mode controller (CST-SMC) is proposed to decrease the tracking error and guarantee the tracking performance in the presence of system nonlinearities compared to three other common controllers: the linear sliding mode controller (L-SMC), global fast terminal sliding mode controller (GFT-SMC), and super-twisting sliding mode controller (ST-SMC). By using the developed controller, the system state of a second-order drag acceleration tracking error system can approach the global fast terminal sliding manifold in finite time. By using the Lyapunov approach, sufficient conditions are deduced to ensure that the tracking performance is obtained for a closed-loop system. Furthermore, we show that the controller is robust to initial uncertain parameters and other perturbations, as validated by simulation results with appropriate gains.

基于滑模理论的高超声速飞行器跳跃轨迹跟踪控制

作者:安凯1,郭振云1,黄伟1,徐小平2
机构:1国防科技大学,空天科学学院,高超声速冲压发动机技术重点实验室,中国长沙,410073;2国防科技大学,北京学科交叉中心,中国北京,100101
目的:高超声速飞行器跳跃滑翔轨迹相比准平衡滑翔轨迹具有更远的飞行航程,但将其作为参考轨迹的跟踪控制器的设计具有较强的挑战性,因为设计需要兼具鲁棒性和精确性。本文旨在提出一种组合超螺旋滑模控制器来探讨跳跃滑翔轨迹的跟踪性能。
创新点:1.推导了三自由度条件下的阻力加速度误差跟踪控制模型;2.提出了一种组合超螺旋滑模控制算法,并与传统控制器进行了比较验证;3.对所提控制器的鲁棒性进行了充分的验证并证明了其有效性。
方法:1.首先以预测校正方法给出需要跟踪的参考状态剖面(纵向剖面、阻力加速度剖面和倾侧角剖面等);2.推导以阻力加速度误差为状态变量的二阶误差动力学系统;3.根据滑模控制理论设计三种传统滑模控制器,并根据这三种控制器的优缺点设计一种组合超螺旋滑模控制器;4.通过仿真对比验证所提控制器的鲁棒性和精确性。
结论:1.相比于比例积分微分控制器以及其他三种传统滑模控制器,本文所提出的组合控制器具有较强的鲁棒性和跟踪剖面的精确性;2.可变参数相比于常值参数具有更强的自适应性,能够有效改善控制器跟踪的精确性。

关键词:预测校正制导法;阻力跟踪控制;滑模控制;超螺旋滑模控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AnH, LiuJX, WangCH, et al., 2016. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles. IEEE Transactions on Industrial Electronics, 63(5):3038-3049.

[2]AnK, GuoZY, XuXP, et al., 2020. A framework of trajectory design and optimization for the hypersonic gliding vehicle. Aerospace Science and Technology, 106:106110.

[3]AwadA, WangHP, 2016. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control. Chinese Journal of Aeronautics, 29(5):1302-1312.

[4]ChenK, LiangWC, LiuMX, et al., 2020. Comparison of geomagnetic aided navigation algorithms for hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(8):673-683.

[5]ChenK, LiangWC, ZengCZ, et al., 2021. Multi-geomagnetic-component assisted localization algorithm for hypersonic vehicles. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(5):357-368.

[6]DuX, LiHY, HuangYC, 2015. Efficient nonlinear algorithm for drag tracking in entry guidance. Procedia Engineering, 99:1014-1026.

[7]FarrellJ, SharmaM, PolycarpouM, 2005. Backstepping-based flight control with adaptive function approximation. Journal of Guidance, Control, and Dynamics, 28(6):1089-1102.

[8]FiorentiniL, SerraniA, BolenderMA, et al., 2009. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 32(2):402-417.

[9]FuSN, LuTY, YinJ, et al., 2021. Rapid algorithm for generating entry landing footprints satisfying the no-fly zone constraint. International Journal of Aerospace Engineering, 2021:8827377.

[10]HarpoldJC, Graves JrCA, 1979. Shuttle entry guidance. Journal of the Astronautical Sciences, 27(3):239-268.

[11]HumaidiAJ, HasanAF, 2019. Particle swarm optimization-based adaptive super-twisting sliding mode control design for 2-degree-of-freedom helicopter. Measurement and Control, 52(9-10):1403-1419.

[12]LevantA, 1998. Robust exact differentiation via sliding mode technique. Automatica, 34(3):379-384.

[13]LiGH, ZhangHB, TangGJ, 2015. Maneuver characteristics analysis for hypersonic glide vehicles. Aerospace Science and Technology, 43:321-328.

[14]LiuZ, TanXM, YuanRY, et al., 2015. Adaptive trajectory tracking control system design for hypersonic vehicles with parametric uncertainty. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(1):119-134.

[15]LuP, 2014. Entry guidance: a unified method. Journal of Guidance, Control, and Dynamics, 37(3):713-728.

[16]LuQ, ZhouJ, 2017. LQR tracking guidance law for hypersonic vehicle. Proceedings of the 29th Chinese Control and Decision Conference, p.7090-7094.

[17]MorenoJA, OsorioM, 2012. Strict Lyapunov functions for the super-twisting algorithm. IEEE Transactions on Automatic Control, 57(4):1035-1040.

[18]SängerE, BredtJ, AinringA, 1952. A Rocket Drive for Long Range Bombers. Government Printing Office, Washington, USA.

[19]TruongTN, VoAT, KangHJ, 2021. A backstepping global fast terminal sliding mode control for trajectory tracking control of industrial robotic manipulators. IEEE Access, 9:31921-31931.

[20]TsienHS, AdamsonTC, KnuthEL, 1952. Automatic navigation of a long range rocket vehicle. Journal of the American Rocket Society, 22(4):192-199.

[21]UtkinV, 1977. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2):212-222.

[22]WenYM, WuST, HuNX, 2014. The analysis and design of control system for unpowered skipping-glide air vehicle in near space. Proceedings of the 33rd Chinese Control Conference, p.3703-3708.

[23]WuHN, FengS, LiuZY, et al., 2017. Disturbance observer based robust mixed H2/H fuzzy tracking control for hypersonic vehicles. Fuzzy Sets and Systems, 306:118-136.

[24]XiuCB, GuoPH, 2018. Global terminal sliding mode control with the quick reaching law and its application. IEEE Access, 6:49793-49800.

[25]XuML, ChenKJ, LiuLH, et al., 2012. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles. Science China Technological Sciences, 55(3):856-866.

[26]YanBB, DaiP, LiuRF, et al., 2019. Adaptive super-twisting sliding mode control of variable sweep morphing aircraft. Aerospace Science and Technology, 92:198-210.

[27]YuXH, ManZH, 2009. Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Transactions on Circuits and Systems, 49(2):261-264.

[28]ZhangGG, WangY, WangJ, et al., 2020. Disturbance observer-based super-twisting sliding mode control for formation tracking of multi-agent mobile robots. Measurement and Control, 53(5-6):908-921.

[29]ZhangYL, ChenKJ, LiuLH, et al., 2016. Entry trajectory planning based on three-dimensional acceleration profile guidance. Aerospace Science and Technology, 48:‍131-139.

[30]ZhaoHW, LiR, 2020. Typical adaptive neural control for hypersonic vehicle based on higher-order filters. Journal of Systems Engineering and Electronics, 31(5):1031-1040.

[31]ZhaoPL, ChenWC, YuWB, 2019. Analytical solutions for longitudinal-plane motion of hypersonic skip-glide trajectory. Nonlinear Dynamics, 96(3):1947-1969.

[32]ZhaoZH, YangJ, LiSH, et al., 2016. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance. Advances in Space Research, 57(12):2508-2518.

[33]ZongQ, DongQ, WangF, et al., 2015. Super twisting sliding mode control for a flexible air-breathing hypersonic vehicle based on disturbance observer. Science China Information Sciences, 58(7):1-15.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE