Full Text:   <3119>

Summary:  <2248>

CLC number: TH165.3; TP391

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-22

Cited: 5

Clicked: 7887

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.11 P.862-872

http://doi.org/10.1631/jzus.A1400102


Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems*


Author(s):  Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan

Affiliation(s):  . State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

Corresponding email(s):   fyxtv@zju.edu.cn

Key Words:  Preventive maintenance (PM) scheduling, Multi-objective optimization, Mechanical system


Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems[J]. Journal of Zhejiang University Science A, 2014, 15(11): 862-872.

@article{title="Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems",
author="Yi-cong Gao, Yi-xiong Feng, Jian-rong Tan",
journal="Journal of Zhejiang University Science A",
volume="15",
number="11",
pages="862-872",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400102"
}

%0 Journal Article
%T Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems
%A Yi-cong Gao
%A Yi-xiong Feng
%A Jian-rong Tan
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 11
%P 862-872
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400102

TY - JOUR
T1 - Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems
A1 - Yi-cong Gao
A1 - Yi-xiong Feng
A1 - Jian-rong Tan
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 11
SP - 862
EP - 872
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400102


Abstract: 
Preventive maintenance (PM) is very important for the safe, efficient, and reliable operation of mechanical systems. This paper focuses on one of the most challenging tasks for PM: PM scheduling. Two basic principles are integrated to support the PM scheduling of mechanical systems: (1) the cost principle, and (2) the reliability principle. These two PM scheduling principles are regarded as conflicting objectives, and the improved strength Pareto evolutionary algorithm is used to find the Pareto-optimal set within which the best compromise solution can be obtained according to fuzzy set theory. Both conceptual and mathematical models of the proposed multi-principle PM scheduling method are explained, and a case study is provided to illustrate the practical application of the new method.

复杂机械产品多准则预防性维护设计

为复杂机械产品提供满足整机可靠性指标和维护成本指标的预防性维护方案多准则规划方法。 1. 分析了检查、维修、更换等对复杂机械产品零部件工作寿命变化的作用机理;2. 提出了复杂机械产品预防性维护多准则规划方法。 1. 基于非完美维修理论,建立不同模式下零件间工作寿命模型,定义维修效能因子,表征检查、维修、更换对零件寿命的影响;2. 通过求解获得复杂机械产品指定时间区间的预防性维护方案,根据零部件工作寿命,采取维修和更换等预防性维护措施,减少零部件故障的发生。 零部件的预防性维护次数与其故障因子相关;机械产品尤其是复杂机械产品实施定期预防性维护能够减少或消除故障的发生。
预防性维护;多准则优化;工作寿命

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Abido, M.A., 2006. Multiobjective evolutionary algorithms for electric power dispatch problem. Evolutionary Computation, IEEE Transactions on, 10(3):315-329. 


[2] Ahmad, R., Kamaruddin, S., 2012. An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63(1):135-149. 


[3] Alardhi, M., Hannam, R.G., Labib, A.W., 2007. Preventive maintenance scheduling for multi-cogeneration plants with production constraints. Journal of Quality in Maintenance Engineering, 13(3):276-292. 


[4] Andersson, J., 2001.  Multi-objective Optimization in Engineering Design: Applications to Fluid Power Systems. PhD Thesis, Division of Fluid and Mechanical Engineering Systems, Department of Mechanical Engineering, Linkopings University,Sweden :

[5] Bartholomew-Biggs, M., Christianson, B., Zuo, M., 2006. Optimizing preventive maintenance models. Computational Optimization and Applications, 35(2):261-279. 


[6] Cassady, C.R., Kutanoglu, E., 2005. Integrating preventive maintenance planning and production scheduling for a single machine. Reliability, IEEE Transactions on, 54(2):304-309. 


[7] Chakraborty, I., Kumar, V., Nair, S.B., 2003. Rolling element bearing design through genetic algorithms. Engineering Optimization, 35(6):649-659. 


[8] Chung, S.H., Lau, H.C., Ho, G.T., 2009. Optimization of system reliability in multi-factory production networks by maintenance approach. Expert Systems with Applications, 36(6):10188-10196. 


[9] Ebrahimipour, V., Najjarbashi, A., Sheikhalishahi, M., 2013. Multi-objective modeling for preventive maintenance scheduling in a multiple production line. Journal of Intelligent Manufacturing, :1-12. 


[10] El-Ferik, S., Ben-Daya, M., 2006. Age-based hybrid model for imperfect preventive maintenance. IIE Transactions, 38(4):365-375. 


[11] Harrou, F., Tassadit, A., Bouyeddou, B., 2010. Efficient optimization algorithm for preventive-maintenance in transmission systems. Journal of Modelling & Simulation of Systems, 1(1):

[12] Jayabalan, V., Chaudhuri, D., 1992. Cost optimization of maintenance scheduling for a system with assured reliability. Reliability, IEEE Transactions on, 41(1):21-25. 


[13] Kim, M., Hiroyasu, T., Miki, M., 2004. SPEA2+: improving the performance of the strength Pareto evolutionary algorithm 2. In Parallel problem solving from nature-PPSN VIII, Springer Berlin Heidelberg,:742-751. 

[14] Levitin, G., Lisnianski, A., 2000. Short communication optimal replacement scheduling in multi-state series-parallel systems. Quality and Reliability Engineering International, 16(2):157-162. 


[15] Liao, W., Pan, E., Xi, L., 2010. Preventive maintenance scheduling for repairable system with deterioration. Journal of Intelligent Manufacturing, 21(6):875-884. 


[16] Lim, J.H., Park, D.H., 2007. Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances. Asia-Pacific Journal of Operational Research, 24(01):111-124. 

[17] Lin, T.W., Wang, C.H., 2012. A hybrid genetic algorithm to minimize the periodic preventive maintenance cost in a series-parallel system. Journal of Intelligent Manufacturing, 23(4):1225-1236. 


[18] Martorell, S., Snchez, A., Carlos, S., 2002. Comparing effectiveness and efficiency in technical specifications and maintenance optimization. Reliability Engineering & System Safety, 77(3):281-289. 


[19] Moghaddam, K.S., Usher, J.S., 2011. Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic programming. Computers & Industrial Engineering, 60(4):654-665. 


[20] Qiu, J., Wang, X., Dai, G., 2014. Improving the indoor localization accuracy for CPS by reorganizing the fingerprint signatures. International Journal of Distributed Sensor Networks, Article No 415710,:


[21] Schutz, J., Rezg, N., Lger, J.B., 2011. Periodic and sequential preventive maintenance policies over a finite planning horizon with a dynamic failure law. Journal of Intelligent Manufacturing, 22(4):523-532. 


[22] Shirmohammadi, A.H., Zhang, Z.G., Love, E., 2007. A computational model for determining the optimal preventive maintenance policy with random breakdowns and imperfect repairs. Reliability, IEEE Transactions on, 56(2):332-339. 


[23] Tam, A.S.B., Chan, W.M., Price, J.W.H., 2006. Optimal maintenance intervals for a multi-component system. Production Planning and Control, 17(8):769-779. 


[24] Tsai, Y.T., Wang, K.S., Tsai, L.C., 2004. A study of availability-centered preventive maintenance for multi-component systems. Reliability Engineering & System Safety, 84(3):261-270. 


[25] Usher, J.S., Kamal, A.H., Syed, W.H., 1998. Cost optimal preventive maintenance and replacement scheduling. IIE Transactions, 30(12):1121-1128. 


[26] Wang, C.H., Lin, T.W., 2011. Improved particle swarm optimization to minimize periodic preventive maintenance cost for series-parallel systems. Expert Systems with Applications, 38(7):8963-8969. 


[27] Wang, C.H., Tsai, S.W., 2014. Optimizing bi-objective imperfect preventive maintenance model for series-parallel system using established hybrid genetic algorithm. Journal of Intelligent Manufacturing, 25(3):603-616. 


[28] Wang, K.S., Chang, S.T., Shen, Y.C., 1996. Dynamic reliability models for fatigue crack growth problem. Engineering Fracture Mechanics, 54(4):543-556. 


[29] Wang, K.S., Chen, C.S., Huang, J.J., 1997. Dynamic reliability behavior for sliding wear of carburized steel. Reliability Engineering & System Safety, 58(1):31-41. 


[30] Watanabe, S., Hiroyasu, T., Miki, M., 2002. NCGA: Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems. GECCO Late Breaking Papers, :458-465. 

[31] Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the Performance of the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Communication Networks Lab (TLK), Swiss Federal Institute of Technology (ETH) Zurich,:


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE