References
[1] Aelterman, P., Rabaey, K., Pham, H.T., 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.
Environmental Science & Technology, 40(10):3388-3394.
[2] Ahmed, J.K.S., 2011. Effect of cathodic biofilm on the performance of air-cathode single chamber microbial fuel cells.
Bulletin of the Korean Chemical Society, 32(10):3726-3729.
[3] Ahn, Y., Zhang, F., Logan, B.E., 2014. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes.
Journal of Power Sources, 247:655-659.
[4] An, J., Jeon, H., Lee, J., 2011. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.
Environmental Science & Technology, 45(12):5441-5446.
[5] Aulenta, F., Tocca, L., Verdini, R., 2011. Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms.
Environmental Science & Technology, 45(19):8444-8451.
[6] Bond, D.R., Lovley, D.R., 2003. Electricity production by geobacter sulfurreducens attached to electrodes.
Applied and Environmental Microbiology, 69(3):1548-1555.
[7] Bond, D.R., Lovley, D.R., 2005. Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans.
Applied and Environmental Microbiology, 71(4):2186-2189.
[8] Borole, A.P., Reguera, G., Ringeisen, B., 2011. Electroactive biofilms: current status and future research needs.
Energy & Environmental Science, 4(12):4813-4834.
[9] Cai, T., Park, S.Y., Li, Y., 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects.
Renewable and Sustainable Energy Reviews, 19:360-369.
[10] Call, D., Logan, B.E., 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.
Environmental Science & Technology, 42(9):3401-3406.
[11] Cao, X., Huang, X., Liang, P., 2009. A new method for water desalination using microbial desalination cells.
Environmental Science & Technology, 43(18):7148-7152.
[12] Cha, J., Choi, S., Yu, H., 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment.
Bioelectrochemistry, 78(1):72-79.
[13] Chen, G.W., Choi, S.J., Lee, T.H., 2008. Application of biocathode in microbial fuel cells: cell performance and microbial community.
Applied Microbiology and Biotechnology, 79(3):379-388.
[14] Chen, X., Xia, X., Liang, P., 2011. Stacked microbial desalination cells to enhance water desalination efficiency.
Environmental Science & Technology, 45(6):2465-2470.
[15] Cheng, S., Logan, B.E., 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells.
Bioresource Technology, 102(6):4468-4473.
[16] Cheng, S., Liu, H., Logan, B.E., 2006. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
Environmental Science & Technology, 40(1):364-369.
[17] Cheng, S., Xing, D., Call, D.F., 2009. Direct biological conversion of electrical current into methane by electromethanogenesis.
Environmental Science & Technology, 43(10):3953-3958.
[18] Cheng, S., Liu, W., Guo, J., 2014. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
Biosensors and Bioelectronics, 56:264-270.
[19] Cheng, S., Ye, Y., Ding, W., 2014. Enhancing power generation of scale-up microbial fuel cells by optimizing the leading-out terminal of anode.
Journal of Power Sources, 248:931-938.
[20] Chung, K., Fujiki, I., Okabe, S., 2011. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
Bioresource Technology, 102(1):355-360.
[21] Clauwaert, P., Verstraete, W., 2009. Methanogenesis in membraneless microbial electrolysis cells.
Applied Microbiology and Biotechnology, 82(5):829-836.
[22] Clauwaert, P., Aelterman, P., Pham, T., 2008. Minimizing losses in bio-electrochemical systems: the road to applications.
Applied Microbiology and Biotechnology, 79(6):901-913.
[23] Clauwaert, P., Tolêdo, R., van der Ha, R.C., 2008. Combining biocatalyzed electrolysis with anaerobic digestion.
Water Science & Technology, 57(4):575-579.
[24] Clauwaert, P., Mulenga, S., Aelterman, P., 2009. Litre-scale microbial fuel cells operated in a complete loop.
Applied Microbiology and Biotechnology, 83(2):241-247.
[25] Cusick, R.D., Kiely, P.D., Logan, B.E., 2010. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters.
International Journal of Hydrogen Energy, 35(17):8855-8861.
[26] Dekker, A., Heijne, A.T., Saakes, M., 2009. Analysis and improvement of a scaled-up and stacked microbial fuel cell.
Environmental Science & Technology, 43(23):9038-9042.
[27] Dewan, A., Donovan, C., Heo, D., 2010. Evaluating the performance of microbial fuel cells powering electronic devices.
Journal of Power Sources, 195(1):90-96.
[28] Donovan, C., Dewan, A., Peng, H., 2011. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell.
Journal of Power Sources, 196(3):1171-1177.
[29] Du, Z., Li, H., Gu, T., 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
Biotechnology Advances, 25(5):464-482.
[30] Durruty, I., Bonanni, P.S., Gonzlez, J.F., 2012. Evaluation of potato-processing wastewater treatment in a microbial fuel cell.
Bioresource Technology, 105:81-87.
[31] Fan, Y., Han, S.K., Liu, H., 2012. Improved performance of CEA microbial fuel cells with increased reactor size.
Energy & Environmental Science, 5(8):8273-8280.
[32] Feng, Y., Wang, X., Logan, B.E., 2008. Brewery wastewater treatment using air-cathode microbial fuel cells.
Applied Microbiology and Biotechnology, 78(5):873-880.
[33] Flynn, J.M., Ross, D.E., Hunt, K.A., 2010. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria.
mBio, 1(5):00190-00110.
[34] Foley, J.M., Rozendal, R.A., Hertle, C.K., 2010. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.
Environmental Science & Technology, 44(9):3629-3637.
[35] Fornero, J.J., Rosenbaum, M., Angenent, L.T., 2010. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells.
Electroanalysis, 22(7-8):832-843.
[36] Freguia, S., Teh, E.H., Boon, N., 2010. Microbial fuel cells operating on mixed fatty acids.
Bioresource Technology, 101(4):1233-1238.
[37] Ge, Z., Ping, Q., He, Z., 2013. Hollow-fiber membrane bioelectrochemical reactor for domestic wastewater treatment.
Journal of Chemical Technology & Biotechnology, 88(8):1584-1590.
[38] Hamelers, H.M., Ter Heijne, A., Sleutels, T.J.A., 2010. New applications and performance of bioelectrochemical systems.
Applied Microbiology and Biotechnology, 85(6):1673-1685.
[39] Harnisch, F., Schroder, U., 2010. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
Chemical Society Reviews, 39(11):4433-4448.
[40] Harnisch, F., Sievers, G., Schrder, U., 2009. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions.
Applied Catalysis B: Environmental, 89(3-4):455-458.
[41] He, Z., 2013. Microbial fuel cells: now let us talk about energy.
Environmental Science & Technology, 47(1):332-333.
[42] Heidrich, E.S., Curtis, T.P., Dolfing, J., 2011. Determination of the internal chemical energy of wastewater.
Environmental Science & Technology, 45(2):827-832.
[43] Ieropoulos, I., Greenman, J., Melhuish, C., 2008. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability.
International Journal of Energy Research, 32(13):1228-1240.
[44] Jacobson, K.S., Drew, D.M., He, Z., 2011. Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode.
Bioresource Technology, 102(1):376-380.
[45] Kalathil, S., Lee, J., Cho, M.H., 2011. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation.
New Biotechnology, 29(1):32-37.
[46] Kim, D., An, J., Kim, B., 2012. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte.
ChemSusChem, 5(6):1086-1091.
[47] Kim, Y., Hatzell, M.C., Hutchinson, A.J., 2011. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal.
Energy & Environmental Science, 4(11):4662-4667.
[48] Larrosa-Guerrero, A., Scott, K., Head, I.M., 2010. Effect of temperature on the performance of microbial fuel cells.
Fuel, 89(12):3985-3994.
[49] Ledezma, P., Greenman, J., Ieropoulos, I., 2013. MFC-cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions.
Bioresource Technology, 134:158-165.
[50] Lee, H.S., Rittmann, B.E., 2010. Characterization of energy losses in an upflow single-chamber microbial electrolysis cell.
International Journal of Hydrogen Energy, 35(3):920-927.
[51] Lefebvre, O., Uzabiaga, A., Chang, I., 2011. Microbial fuel cells for energy self-sufficient domestic wastewater treatment—a review and discussion from energetic consideration.
Applied Microbiology and Biotechnology, 89(2):259-270.
[52] Levine, A.D., Asano, T., 2004. Peer reviewed: recovering sustainable water from wastewater.
Environmental Science & Technology, 38(11):201A-208A.
[53] Li, C., Fang, H.H.P., 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures.
Critical Reviews in Environmental Science and Technology, 37(1):1-39.
[54] Li, W.W., Yu, H.Q., He, Z., 2014. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies.
Energy & Environmental Science, 7(3):911-924.
[55] Li, Z., Zhang, X., Lei, L., 2008. Electricity production during the treatment of real electroplating wastewater containing Cr
6+ using microbial fuel cell.
Process Biochemistry, 43(12):1352-1358.
[56] Liu, H., Logan, B.E., 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
Environmental Science & Technology, 38(14):4040-4046.
[57] Liu, H., Cheng, S., Logan, B.E., 2005. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration.
Environmental Science & Technology, 39(14):5488-5493.
[58] Liu, H., Grot, S., Logan, B.E., 2005. Electrochemically assisted microbial production of hydrogen from acetate.
Environmental Science & Technology, 39(11):4317-4320.
[59] Liu, H., Cheng, S., Huang, L., 2008. Scale-up of membrane-free single-chamber microbial fuel cells.
Journal of Power Sources, 179(1):274-279.
[60] Liu, L., Li, F.B., Feng, C.H., 2009. Microbial fuel cell with an azo-dye-feeding cathode.
Applied Microbiology and Biotechnology, 85(1):175-183.
[61] Logan, B.E., 2009. Exoelectrogenic bacteria that power microbial fuel cells.
Nature Reviews Microbiology, 7(5):375-381.
[62] Logan, B.E., 2010. Scaling up microbial fuel cells and other bioelectrochemical systems.
Applied Microbiology and Biotechnology, 85(6):1665-1671.
[63] Logan, B.E., Cheng, S., Watson, V., 2007. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
Environmental Science & Technology, 41(9):3341-3346.
[64] Lovley, D.R., 2011. Powering microbes with electricity: direct electron transfer from electrodes to microbes.
Environmental Microbiology Reports, 3(1):27-35.
[65] McCarty, P.L., Bae, J., Kim, J., 2011. Domestic wastewater treatment as a net energy producer—can this be achieved?.
Environmental Science & Technology, 45(17):7100-7106.
[66] Min, B., Logan, B.E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.
Environmental Science & Technology, 38(21):5809-5814.
[67] Min, B., Cheng, S., Logan, B.E., 2005. Electricity generation using membrane and salt bridge microbial fuel cells.
Water Research, 39(9):1675-1686.
[68] Min, B., Kim, J., Oh, S., 2005. Electricity generation from swine wastewater using microbial fuel cells.
Water Research, 39(20):4961-4968.
[69] Mu, Y., Rabaey, K., Rozendal, R.A., 2009. Decolorization of azo dyes in bioelectrochemical systems.
Environmental Science & Technology, 43(13):5137-5143.
[70] Muga, H.E., Mihelcic, J.R., 2008. Sustainability of wastewater treatment technologies.
Journal of Environmental Management, 88(3):437-447.
[71] Nevin, K.P., Woodard, T.L., Franks, A.E., 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.
mBio, 1(2):103-110.
[72] Nowak, O.K.S., Fimml, C., 2011. Examples of energy self-sufficient municipal nutrient removal plants.
Water Science & Technology, 64(1):1-6.
[73] Oh, S.T., Kim, J.R., Premier, G.C., 2010. Sustainable wastewater treatment: how might microbial fuel cells contribute.
Biotechnology Advances, 28(6):871-881.
[74] Pant, D., van Bogaert, G., Diels, L., 2010. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.
Bioresource Technology, 101(6):1533-1543.
[75] Pant, D., Singh, A., van Bogaert, G., 2012. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters.
RSC Advances, 2(4):1248-1263.
[76] Park, J.D., Ren, Z., 2012. High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter.
Journal of Power Sources, 208(0):322-327.
[77] Park, J.D., Ren, Z., 2012. Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells.
Journal of Power Sources, 205:151-156.
[78] Pham, T.H., Rabaey, K., Aelterman, P., 2006. Microbial fuel cells in relation to conventional anaerobic digestion technology.
Engineering in Life Sciences, 6(3):285-292.
[79] Qiao, Y., Li, C.M., Bao, S.J., 2008. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells.
Chemical Communications, 11:1290-1292.
[80] Rabaey, K., Verstraete, W., 2005. Microbial fuel cells: novel biotechnology for energy generation.
Trends in Biotechnology, 23(6):291-298.
[81] Rabaey, K., Rozendal, R.A., 2010. Microbial electrosynthesis—revisiting the electrical route for microbial production.
Nature Reviews Microbiology, 8(10):706-716.
[82] Rabaey, K., van de Sompel, K., Maignien, L., 2006. Microbial fuel cells for sulfide removal.
Environmental Science & Technology, 40(17):5218-5224.
[83] Rabaey, K., Btzer, S., Brown, S., 2010. High current generation coupled to caustic production using a lamellar bioelectrochemical system.
Environmental Science & Technology, 44(11):4315-4321.
[84] Ringeisen, B.R., Henderson, E., Wu, P.K., 2006. High power density from a miniature microbial fuel cell using
Shewanella oneidensis DSP10.
Environmental Science & Technology, 40(8):2629-2634.
[85] Rismani-Yazdi, H., Carver, S.M., Christy, A.D., 2008. Cathodic limitations in microbial fuel cells: an overview.
Journal of Power Sources, 180(2):683-694.
[86] Rittmann, B.E., 2008. Opportunities for renewable bioenergy using microorganisms.
Biotechnology and Bioengineering, 100(2):203-212.
[87] Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., 2006. Principle and perspectives of hydrogen production through biocatalyzed electrolysis.
International Journal of Hydrogen Energy, 31(12):1632-1640.
[88] Rozendal, R.A., Hamelers, H.V.M., Molenkamp, R.J., 2007. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
Water Research, 41(9):1984-1994.
[89] Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., 2008. Towards practical implementation of bioelectrochemical wastewater treatment.
Trends in Biotechnology, 26(8):450-459.
[90] Rozendal, R.A., Jeremiasse, A.W., Hamelers, H.V.M., 2008. Hydrogen production with a microbial biocathode.
Environmental Science & Technology, 42(2):629-634.
[91] Rozendal, R.A., Leone, E., Keller, J., 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system.
Electrochemistry Communications, 11(9):1752-1755.
[92] Santoro, C., Lei, Y., Li, B., 2012. Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes.
Biochemical Engineering Journal, 62:8-16.
[93] Santoro, C., Stadlhofer, A., Hacker, V., 2013. Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs).
Journal of Power Sources, 243:499-507.
[94] Schmidt, T.J., Paulus, U.A., Gasteiger, H.A., 2001. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions.
Journal of Electroanalytical Chemistry, 508(1-2):41-47.
[95] Selembo, P.A., Merrill, M.D., Logan, B.E., 2009. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells.
Journal of Power Sources, 190(2):271-278.
[96] Sharma, Y., Li, B., 2010. Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC).
International Journal of Hydrogen Energy, 35(8):3789-3797.
[97] Steinbusch, K.J.J., Hamelers, H.V.M., Schaap, J.D., 2010. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.
Environmental Science & Technology, 44(1):513-517.
[98] Tartakovsky, B., Manuel, M.F., Wang, H., 2009. High rate membrane-less microbial electrolysis cell for continuous hydrogen production.
International Journal of Hydrogen Energy, 34(2):672-677.
[99] Timmers, R., Strik, D.B.T.B., Hamelers, H.M., 2010. Long-term performance of a plant microbial fuel cell with
Spartina anglica
.
Applied Microbiology and Biotechnology, 86(3):973-981.
[100] Walker, A.L., Walker, C.W., 2006. Biological fuel cell and an application as a reserve power source.
Journal of Power Sources, 160(1):123-129.
[101] Wang, A., Sun, D., Cao, G., 2011. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
Bioresource Technology, 102(5):4137-4143.
[102] Wang, B., Han, J.I., 2009. A single chamber stackable microbial fuel cell with air cathode.
Biotechnology Letters, 31(3):387-393.
[103] Wang, Y.K., Sheng, G.P., Shi, B.J., 2013. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment.
Scientific Reports, 3:1864-1870.
[104] Watson, V.J., Saito, T., Hickner, M.A., 2011. Polymer coatings as separator layers for microbial fuel cell cathodes.
Journal of Power Sources, 196(6):3009-3014.
[105] Watson, V.J., Nieto Delgado, C., Logan, B.E., 2013. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance.
Environmental Science & Technology, 47(12):6704-6710.
[106] Xing, D., Zuo, Y., Cheng, S., 2008. Electricity generation by rhodopseudomonas palustris DX-1.
Environmental Science & Technology, 42(11):4146-4151.
[107] Xu, J., Sheng, G.P., Luo, H.W., 2012. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.
Water Research, 46(6):1817-1824.
[108] Xu, Y., Jiang, Y., Chen, Y., 2014. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
Water Environment Research, 86(7):649-653.
[109] Yan, H., Saito, T., Regan, J.M., 2012. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.
Water Research, 46(7):2215-2224.
[110] Yang, S., Jia, B., Liu, H., 2009. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell.
Bioresource Technology, 100(3):1197-1202.
[111] You, S.J., Zhao, Q.L., Jiang, J.Q., 2006. Sustainable approach for leachate treatment: electricity generation in microbial fuel cell.
Journal of Environmental Science and Health, Part A, 41(12):2721-2734.
[112] You, S.J., Zhao, Q.L., Jiang, J.Q., 2006. Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation.
Chemical and Biochemical Engineering Quarterly, 20(4):407-412.
[113] Yu, J., Seon, J., Park, Y., 2012. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment.
Bioresource Technology, 117:172-179.
[114] Yuan, Y., Zhou, S., Tang, J., 2013.
In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH
− and oxygen transport in microbial fuel cells.
Environmental Science & Technology, 47(9):4911-4917.
[115] Zhang, B., Zhao, H., Shi, C., 2009. Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells.
Journal of Chemical Technology & Biotechnology, 84(12):1780-1786.
[116] Zhang, B., Zhao, H., Zhou, S., 2009. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation.
Bioresource Technology, 100(23):5687-5693.
[117] Zhang, F., He, Z., 2012. Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells.
Journal of Chemical Technology & Biotechnology, 87(1):153-159.
[118] Zhang, F., Jacobson, K.S., Torres, P., 2010. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell.
Energy & Environmental Science, 3(9):1347-1352.
[119] Zhang, F., Pant, D., Logan, B.E., 2011. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
Biosensors and Bioelectronics, 30(1):49-55.
[120] Zhang, F., Tian, L., He, Z., 2011. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes.
Journal of Power Sources, 196(22):9568-9573.
[121] Zhang, F., Ge, Z., Grimaud, J., 2013.
In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant.
Bioresource Technology, 136:316-321.
[122] Zhang, F., Ge, Z., Grimaud, J., 2013. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility.
Environmental Science & Technology, 47(9):4941-4948.
[123] Zhang, X., Cheng, S., Wang, X., 2009. Separator characteristics for increasing performance of microbial fuel cells.
Environmental Science & Technology, 43(21):8456-8461.
[124] Zhang, X., Cheng, S., Huang, X., 2010. Improved performance of single-chamber microbial fuel cells through control of membrane deformation.
Biosensors and Bioelectronics, 25(7):1825-1828.
[125] Zhang, Y., Angelidaki, I., 2012. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes.
Water Research, 46(19):6445-6453.
[126] Zhang, Y., Noori, J.S., Angelidaki, I., 2011. Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC).
Energy & Environmental Science, 4(10):4340-4346.
[127] Zhao, F., Harnisch, F., Schroder, U., 2006. Challenges and constraints of using oxygen cathodes in microbial fuel cells.
Environmental Science & Technology, 40(17):5193-5199.
[128] Zhao, F., Rahunen, N., Varcoe, J.R., 2009. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal.
Biosensors and Bioelectronics, 24(7):1931-1936.
[129] Zhou, M., Chi, M., Luo, J., 2011. An overview of electrode materials in microbial fuel cells.
Journal of Power Sources, 196(10):4427-4435.
[130] Zhuang, L., Yuan, Y., Wang, Y., 2012. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater.
Bioresource Technology, 123:406-412.
Open peer comments: Debate/Discuss/Question/Opinion
<1>