CLC number: O346.2
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-10-16
Cited: 2
Clicked: 4295
Shan-qin Hou, Jin-quan Xu. Relationship among S-N curves corresponding to different mean stresses or stress ratios[J]. Journal of Zhejiang University Science A, 2015, 16(11): 885-893.
@article{title="Relationship among S-N curves corresponding to different mean stresses or stress ratios",
author="Shan-qin Hou, Jin-quan Xu",
journal="Journal of Zhejiang University Science A",
volume="16",
number="11",
pages="885-893",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400321"
}
%0 Journal Article
%T Relationship among S-N curves corresponding to different mean stresses or stress ratios
%A Shan-qin Hou
%A Jin-quan Xu
%J Journal of Zhejiang University SCIENCE A
%V 16
%N 11
%P 885-893
%@ 1673-565X
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400321
TY - JOUR
T1 - Relationship among S-N curves corresponding to different mean stresses or stress ratios
A1 - Shan-qin Hou
A1 - Jin-quan Xu
J0 - Journal of Zhejiang University Science A
VL - 16
IS - 11
SP - 885
EP - 893
%@ 1673-565X
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400321
Abstract: It is well known that the mean stress or stress ratio of fatigue loadings has a strong effect on the shape of s-N curves. An understanding of the relationships among s-N curves corresponding to different mean stresses or stress ratios would be very useful in engineering applications. In this study, based on continuum damage mechanics, a mathematical expression of an s-N curve is deduced from a new damage evolution law. This mathematical expression can well represent the whole s-N curve, not only the linear part in bi-logarithmic diagrams, but also the transitional part near the fatigue limit. The effect of mean stress on an s-N curve is represented by two state parameters. The relationships between these state parameters and the mean stress are proposed and examined. By using these relationships, the concepts of equivalent symmetric amplitude and equivalent symmetric cycles are introduced. We have found that all s-N curves under non-symmetric states can be rearranged into the same curve as that of symmetric fatigue by adopting these equivalent parameters.
[1]Abdul-Baqi, A., Schreurs, P.J.G., Geers, M.G.D., 2005. Fatigue damage modeling in solder interconnects using a cohesive zone approach. International Journal of Solids and Structures, 42(3-4):927-942.
[2]Alexopoulos, N.D., Migklis, E., Stylianos, A., et al., 2013. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 56:95-105.
[3]Avanzini, A., Donzella, G., Gallina, D., et al., 2013. Fatigue behavior and cyclic damage of peek short fiber reinforced composites. Composites Part B: Engineering, 45(1):397-406.
[4]Ayoub, G., Abdelaziz, M.N., Zairi, F., et al., 2011. A continuum damage model for the high cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading. International Journal of Solids and Structures, 48(18):2458-2466.
[5]Chamos, A.N., Charitidis, C.A., Skarmoutsou, A., et al., 2010. An investigation on the high stress sensitivity of fatigue life of rolled AZ31 magnesium alloy under constant amplitude fatigue loading. Fatigue & Fracture of Engineering Materials & Structures, 33(4):252-265.
[6]Cusumano, J.P., Chatterjee, A., 2000. Steps towards a qualitative dynamics of damage evolution. International Journal of Solids and Structures, 37(44):6397-6417.
[7]Deng, G.J., Tu, S.T., Wang, Q.Q., et al., 2014. Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels. International Journal of Fatigue, 64:14-21.
[8]El Sawi, I., Fawaz, Z., Zitoune, R., et al., 2014. An investigation of the damage mechanisms and fatigue life diagrams of flax fiber-reinforced polymer laminates. Journal of Materials Science, 49(5):2338-2346.
[9]Gao, Z.T., 1981. A Handbook on Fatigue Properties of Aeronautical Material. Beijing Material Research Institute, Beijing, China, p.45-223 (in Chinese).
[10]Gerber, H., 1874. Bestimung der zulassigen spannungen in Eisen-konstructionzen. Zeischrift des Bayerischen Architeckten und Ingenieur-vereins, 6:101-110 (in German).
[11]Goodman, J., 1899. Mechanics Applied to Engineering. Longman, London.
[12]Han, Z.Y., Huang, X.G., Cao, Y.G., et al., 2014. A nonlinear cumulative evolution model for corrosion fatigue damage. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(6):447-453.
[13]Huang, X.G., Xu, J.Q., 2013. 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):292-299.
[14]Humayun Kabir, S.M., Yeo, T.I., 2014. Evaluation of an energy-based fatigue approach considering mean stress effects. Journal of Mechanical Science and Technology, 28(4):1265-1275.
[15]Jabbado, M., Maitournam, M.H., 2008. A high-cycle fatigue life model for variable amplitude multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 31(1):67-75.
[16]Kachanov, L.M., 1986. Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht, the Netherlands, p.138.
[17]Kravchenko, S.G., Kravchenko, O.G., Sun, C.T., 2014. A two-parameter fracture mechanics model for fatigue crack growth in brittle materials. Engineering Fracture Mechanics, 119:132-147.
[18]Lee, Y.L., Barkey, M.E., Kang, H.T., 2012. Metal Fatigue Analysis Handbook. Elsevier, Oxford, p.383-460.
[19]Liu, J., Zhang, F., 2012. Fatigue life prediction of composite laminate. Advanced Materials Research, 472-475: 591-595.
[20]Milašinović, D.D., 2003. Rheological–dynamical analogy: modeling of fatigue behavior. International Journal of Solids and Structures, 40(1):181-217.
[21]Morel, F., 2001. A critical plane fatigue model applied to out-of-phase bending and torsion load conditions. Fatigue & Fracture of Engineering Materials & Structures, 24(3):153-164.
[22]Mutoh, Y., Xu, J.Q., 2003. Fracture mechanics approach to fretting fatigue and problems to be solved. Tribology International, 36(2):99-107.
[23]Peng, L.M., Fu, P.H., Li, Z.M., 2014. High cycle fatigue properties of cast Mg-xNd-0.2Zn-Zr alloys. Journal of Materials Science, 49(20):7105-7115.
[24]Soppa, E.A., Kohler, C., Roos, E., 2014. Fatigue mechanisms in an austenitic steel under cyclic loading: experiments and atomistic simulations. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 597:128-138.
[25]Stephens, R.I., Fuchs, H.O., 2001. Metal Fatigue in Engineering. Wiley, New York, p.59-122.
[26]Verreman, Y., Guo, H., 2007. High-cycle fatigue mechanisms in 1045 steel under non-proportional axial-torsional loading. Fatigue and Fracture of Engineering Materials and Structures, 30(10):932-946.
Open peer comments: Debate/Discuss/Question/Opinion
<1>