CLC number: TD422
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-04-07
Cited: 0
Clicked: 4826
Sr?an M. Bonjak, Neboja B. Gnjatovi?, Sreten D. Savi?evi?, Milorad P. Panteli?, Ivan Lj. Milenovi?. Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure[J]. Journal of Zhejiang University Science A, 2016, 17(5): 353-365.
@article{title="Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure",
author="Sr?an M. Bonjak, Neboja B. Gnjatovi?, Sreten D. Savi?evi?, Milorad P. Panteli?, Ivan Lj. Milenovi?",
journal="Journal of Zhejiang University Science A",
volume="17",
number="5",
pages="353-365",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500037"
}
%0 Journal Article
%T Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure
%A Sr?an M. Bonjak
%A Neboja B. Gnjatovi?
%A Sreten D. Savi?evi?
%A Milorad P. Panteli?
%A Ivan Lj. Milenovi?
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 5
%P 353-365
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500037
TY - JOUR
T1 - Basic parameters of the static stability, loads and strength of the vital parts of a bucket wheel excavator’s slewing superstructure
A1 - Sr?an M. Bonjak
A1 - Neboja B. Gnjatovi?
A1 - Sreten D. Savi?evi?
A1 - Milorad P. Panteli?
A1 - Ivan Lj. Milenovi?
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 5
SP - 353
EP - 365
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500037
Abstract: Determining a bucket wheel excavator (BWE)’s slewing superstructure weight and its center of gravity (COG) is of extreme importance not only in the design phase, but also after the completion of the erection process and during the operation of the machine. This paper presents a critical comparative analysis of the basic parameters of the static stability of a BWE 1600 superstructure, with the parameters being obtained by both analytical and experimental procedures. The analysis shows that a relatively small difference in superstructure mass, obtained by calculation, leads to a relatively large unfavorable shifting of its COG, necessitating a significant increase in counterweight mass for balancing. A procedure for superstructure 3D model mass correction is presented based on results obtained by weighing after the completion of the erection process. The developed model provides enough accuracy to determine the superstructure’s COG in the entire domain of the bucket wheel boom inclination angle, and enables accurate load analysis of the superstructure’s vital parts. The importance of this analysis is reinforced by the finding that the procedure prescribed by standard DIN 22261-2 gives results which are not on the side of safety, as shown by an example of strength analysis of a bucket wheel boom stays’ end eyes.
[1]Bartelmus, W., 2006. Condition Monitoring of Open Cast Mining Machinery. Wroclaw University Press, Wroclaw, Poland.
[2]Bartelmus, W., Zimorz, R., 2009. A new feature for monitoring the condition of gearboxes in non-stationary operating conditions. Mechanical Systems and Signal Processing, 23(5):1528-1534.
[3]Bošnjak, S., Zrnić, N., 2012. Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems. Archives of Civil and Mechanical Engineering, 12(3):348-359.
[4]Bošnjak, S., Oguamanam, D., Zrnić, N., 2006. On the dynamic modeling of bucket wheel excavators. FME Transactions, 34(4):221-226.
[5]Bošnjak, S., Zrnić, N., Simonović, A., et al., 2009a. Failure analysis of the end eye connection of the bucket wheel excavator portal tie-rod support. Engineering Failure Analysis, 16(3):740-750.
[6]Bošnjak, S., Petković, Z., Zrnić, N., et al., 2009b. Cracks, repair and reconstruction of bucket wheel excavator slewing platform. Engineering Failure Analysis, 16(5):1631-1642.
[7]Bošnjak, S., Zrnić, N., Gašić, V., et al., 2012. External load variability of multibucket machines for mechanization. Advanced Materials Research, 422:678-683.
[8]CEN (European Committee for Standardisation), 2011. Hot Rolled Products of Structural Steels-Part 2: Technical Delivery Conditions for Non-alloy Structural Steels, prEN 10025-2:2011. CEN, Brussels, Belgium.
[9]Czmochowski, J., 2008. Identyfikacja modeli modalnych maszyn urabiających w górnictwie węgla brunatnego. Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw, Poland (in Polish).
[10]DIN (Deutsches Institut für Normung), 2014. Bagger, Absetzer und Zusatzgeräte in Braunkohlentagebauen-Teil 2: Berechnungsgrundlagen, DIN 22261-2:2014. DIN, Germany (in German).
[11]Dudek, D., Frydman, S., Huss, W., et al., 2011. The L35GSM cast steel–possibilities of structure and properties shaping at the example of crawler links. Archives of Civil and Mechanical Engineering, 11(1):19-32.
[12]Durst, W., Vogt, W., 1988. Bucket Wheel Excavator. Trans Tech Publications, Clausthal-Zellerfeld, Germany.
[13]Gottvald, J., 2010. The calculation and measurement of the natural frequencies of the bucket wheel excavator SchRs 1320/4x30. Transport, 25(3):269-277.
[14]Gottvald, J., Kala, Z., 2012. Sensitivity analysis of tangential digging forces of the bucket wheel excavator SchRs 1320 for different terraces. Journal of Civil Engineering and Management, 18(5):609-620.
[15]Nan, N., Kovacs, I., Popescu, F., 2008. Balance control by weighting and tensiometric measurements of bucket wheel excavators. WSEAS Transactions on Systems and Control, 3(11):927-938.
[16]Petersen, C., 1990. Stahlbau: Grundlagen der Berechnung und Baulichen Ausbildung von Stahlbauten, 2nd Edition. Vieweg, Braunschweig, Germany.
[17]Rişteiu, M., Ileanǎ, I., Duma, S., 2006. New approaches in heavy duties industrial processes monitoring by using smart sensors. Acta Universitatis Apulensis, 12:80-92.
[18]Rusiński, E., Czmochowski, J., Iluk, A., et al., 2010a. An analysis of the causes of a BWE counterweight boom support fracture. Engineering Failure Analysis, 17(1):179-191.
[19]Rusiński, E., Moczko, P., Kaczyński, P., 2010b. Structural modifications of excavator’s bucket wheel by the use of numerical methods. Solid State Phenomena, 165:330-335.
[20]Rusiński, E., Dragan, S., Moczko, P., et al., 2012. Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit. Archives of Civil and Mechanical Engineering, 12(4):471-476.
[21]Savković, M., Gašić, M., Arsić, M., et al., 2011. Analysis of the axle fracture of the bucket wheel excavator. Engineering Failure Analysis, 18(1):433-441.
[22]Yin, Y., Grondin, G.Y., Obaia, K.H., et al., 2007. Fatigue life prediction of heavy mining equipment. Part 1: Fatigue load assessment and crack growth rate tests. Journal of Constructional Steel Research, 63(11):1494-1505.
[23]Yin, Y., Grondin, G.Y., Obaia, K.H., et al., 2008. Fatigue life prediction of heavy mining equipment. Part 2: Behaviour of corner crack in steel welded box section and remaining fatigue life determination. Journal of Constructional Steel Research, 64(1):62-71.
Open peer comments: Debate/Discuss/Question/Opinion
<1>