Full Text:   <2761>

Summary:  <1970>

CLC number: O646

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-01-25

Cited: 0

Clicked: 5303

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xin-yue Zhao

http://orcid.org/0000-0001-9097-771X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.2 P.155-162

http://doi.org/10.1631/jzus.A1500099


A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries


Author(s):  Xin-yue Zhao, Jing-lun Wang, Hao Luo, Hu-rong Yao, Chu-ying Ouyang, Ling-zhi Zhang

Affiliation(s):  Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; more

Corresponding email(s):   lzzhang@ms.giec.ac.cn

Key Words:  Organosilicon, Ionic plastic crystal, Solid-state electrolyte, Lithium-ion battery


Xin-yue Zhao, Jing-lun Wang, Hao Luo, Hu-rong Yao, Chu-ying Ouyang, Ling-zhi Zhang. A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries[J]. Journal of Zhejiang University Science A, 2016, 17(2): 155-162.

@article{title="A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries",
author="Xin-yue Zhao, Jing-lun Wang, Hao Luo, Hu-rong Yao, Chu-ying Ouyang, Ling-zhi Zhang",
journal="Journal of Zhejiang University Science A",
volume="17",
number="2",
pages="155-162",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500099"
}

%0 Journal Article
%T A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries
%A Xin-yue Zhao
%A Jing-lun Wang
%A Hao Luo
%A Hu-rong Yao
%A Chu-ying Ouyang
%A Ling-zhi Zhang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 2
%P 155-162
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500099

TY - JOUR
T1 - A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries
A1 - Xin-yue Zhao
A1 - Jing-lun Wang
A1 - Hao Luo
A1 - Hu-rong Yao
A1 - Chu-ying Ouyang
A1 - Ling-zhi Zhang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 2
SP - 155
EP - 162
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500099


Abstract: 
A novel organosilicon-based ionic plastic crystal, N,N,N,-diethylmethyl-N-[(trimethylsilyl)methyl]ammonium bistrifluoromethane sulfonimide ([DTMA][TFSI]) was designed and synthesized as solid-state electrolyte for lithium-ion batteries. The chemical structure and the physical and electrochemical properties were characterized in detail. The ionic conductivity of [DTMA][TFSI] was improved significantly by doping with lithium oxalyldifluoroborate (LiODFB) and propylene carbonate (PC). An optimized plastic crystal composite ([DTMA][TFSI]:LiODFB:PC=8:1: molar ratio) as a solid-state electrolyte exhibited a decent cycling stability in LiFePO4/Li half-cell, with a specific discharge capacity of 144 mA·h/g and capacity retention of 94% after 50 cycles at C/20.

This is a solid paper describing relevant and interesting work on the use of organic plastic crystals in Li-Bat applications.

新型有机硅基离子塑晶材料作为固态电解质用于锂离子电池

目的:合成新型的有机硅基离子塑晶材料 [DTMA][TFSI],测试材料的物理和电化学性能,研究其掺杂改性并作为固态电解质用于锂离子电池。
创新点:1. 合成新型的有机硅基离子型塑晶材料;2. 将三元复合塑晶材料作为固态电解质在室温下用于锂离子电池。
方法:1. 通过热性能分析,得到材料的塑晶温度区间和融化熵值(图1和表1);2. 通过电导率测试,确定塑晶掺杂对导电性能的影响(图2);3. 通过对扣式电池的充放电性能、倍率性能、循环性能以及阻抗的测试(图4~7),得到塑晶复合物作为固态电解质的电化学性能以及电池循环的稳定性和可逆性。
结论:1. 合成新型有机硅基离子塑晶材料[DTMA][TFSI],塑晶温度区间为-26 °C到54 °C;2. 在纯塑晶IPC中添加10% LiODFB和10% PC,得到复合物的电导率为1×10-4 S/cm,提高塑晶作为固态电解质在室温下应用的可行性;3. 将复合物用于LiFePO4/Li半电池测试,在C/20倍率下,电池的放电比容量为144 mA·h/g,库伦效率为99%。在50次循环后,容量保持率为94%;4. 测试结果表明,新型有机硅基离子塑晶的复合物可作为固态电解质材料应用于锂离子电池,以及更高能量密度的锂-硫和锂-空电池。

关键词:有机硅;离子塑晶;固态电解质;锂离子电池

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abu-Lebdeh, Y., Abouimrane, A., Alarco, P.J., et al., 2004. Ambient temperature proton conducting plastic crystal electrolytes. Electrochemistry Communications, 6(4):432-434.

[2]Alarco, P.J., Abu-Lebdeh, Y., Ravet, N., et al., 2004. Lithium conducting pyrazolium imides plastic crystals: a new solid state electrolyte matrix. Solid State Ionics, 172(1-4):53-56.

[3]Armel, V., Velayutham, D., Sun, J.Z., et al., 2011. Ionic liquids and organic ionic plastic crystals utilizing small phosphonium cations. Journal of Materials Chemistry, 21(21):7640-7650.

[4]Forsyth, M., Huang, J., MacFarlane, D.R., 2000. Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluorome-thanesulfonyl)amide fast-ion conducting plastic crystals. Journal of Materials Chemistry, 10(10):2259-2265.

[5]Glasse, M.D., Idris, R., Latham, R.J., et al., 2002. Polymer electrolytes based on modified natural rubber. Solid State Ionics, 147(3-4):289-294.

[6]Hammami, A., Raymond, N., Armand, M., 2003. Runaway risk of forming toxic compounds. Nature, 424(6949):635-636.

[7]Hasegawa, E., Brumfield, M.A., Mariano, P.S., et al., 1988. Photoadditions of ethers, thioethers, and amines to 9, 10-dicyanoanthracene by electron-transfer pathways. Journal of Organic Chemistry, 53(23):5435-5442.

[8]Horike, S., Umeyama, D., Inukai, M., et al., 2012. Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. Journal of the American Chemical Society, 134(18):7612-7615.

[9]Howlett, P.C., Sunarso, J., Shekibi, Y., et al., 2011. On the use of organic ionic plastic crystals in all solid-state lithium metal batteries. Solid State Ionics, 204-205:73-79.

[10]Kim, H., Nguyen, D.Q., Bae, H.W., et al., 2008. Effect of ether group on the electrochemical stability of zwitterionic imidazolium compounds. Electrochemistry Communications, 10(11):1761-1764.

[11]MacFarlane, D.R., Forsyth, M., 2001. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Advanced Materials, 13(12-13):957-966.

[12]MacFarlane, D.R., Meakin, P., Amini, N., et al., 2001. Structural studies of ambient temperature plastic crystal ion conductors. Journal of Physics: Condensed Matter, 13(36):8257-8267.

[13]Moriya, M., Watanabe, T., Nabeno, S., et al., 2014. Crystal structure and solid-state ionic conductivity of cyclic sulfonylamide salts with cyano-substituted quaternary ammonium cations. Chemistry Letters, 43(1):108-110.

[14]Osman, Z., Ibrahim, Z.A., Arof, A.K., 2001. Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydrate Polymers, 44(2):167-173.

[15]Pringle, J.M., 2013. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Physical Chemistry Chemical Physics, 15(5):1339-1351.

[16]Qin, X.Y., Wang, J.L., Tang, D.P., et al., 2013. Triethoxysilane with oligo(ethylene oxide) substituent as film forming additive for graphite anode. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(7):514-519.

[17]Rana, U.A., Forsyth, M., MacFarlane, D.R., et al., 2012. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochimica Acta, 84:213-222.

[18]Rossi, N.A.A., West, R., 2009. Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polymer International, 58(3):267-272.

[19]Ruther, T., Huang, J., Hollenkamp, A.F., 2007. A new family of ionic liquids based on N,N-dialkyl-3-azabicyclo [3.2.2]nonanium cations: organic plastic crystal behaviour and highly reversible lithium metal electrodeposition. Chemical Communications, 48:5226-5228.

[20]Shekibi, Y., Ruther, T., Huang, J.H., et al., 2012. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Physical Chemistry Chemical Physics, 14(13):4597-4604.

[21]Shirota, H., Castner, E.W., 2005. Why are viscosities lower for ionic liquids with –CH2Si(CH3)3 vs –CH(CH3)3 substitutions on the imidazolium cations Journal of Physical Chemistry B, 109(46):21576-21585.

[22]Sunarso, J., Shekibi, Y., Efthimiadis, J., et al., 2012. Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. Journal of Solid State Electrochemistry, 16(5):1841-1848.

[23]Taniki, R., Matsumoto, K., Nohira, T., et al., 2014. All solid-state electrochemical capacitors using N,N-dimethylpyrrolidinium fluorohydrogenate as ionic plastic crystal electrolyte. Journal of Power Sources, 245:758-763.

[24]Tarascon, J.M., Armand, M., 2001. Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861):359-367.

[25]Timmermans, J., 1961. Plastic crystals—a historical review. Journal of Physics and Chemistry of Solids, 18(1):1-8.

[26]Unemoto, A., Gambe, Y., Komatsu, D., et al., 2014. Development of high capacity all-solid-state lithium battery using quasi-solid-state electrolyte containing tetraglyme –Li-TFSA equimolar complexes. Solid State Ionics, 262:765-768.

[27]Wang, Y.F., Zhang, J.M., Cui, X.R., et al., 2013. A novel organic ionic plastic crystal electrolyte for solid-state dye-sensitized solar cells. Electrochimica Acta, 112:247-251.

[28]Weng, W., Zhang, Z.C., Lu, J., et al., 2011. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries. Chemical Communications, 47(43):11969-11971.

[29]Yan, X.D., Zhang, L.Z., 2013. Polyethylene glycol-modified poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) counter electrodes for dye-sensitized solar cell. Journal of Applied Electrochemistry, 43(6):605-610.

[30]Yong, T.Q., Wang, J.L., Mai, Y.J., et al., 2014. Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries. Journal of Power Sources, 254:29-32.

[31]Zhang, H.P., Fu, L.J., Wu, Y.P., et al., 2007. Changes of LiCoO2 cathode material for lithium-ion battery during long cycling. Electrochemical and Solid-State Letters, 10(12):A283-A285.

[32]Zhang, L.Z., Zhang, Z.C., Harring, S., et al., 2008. Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications. Journal of Materials Chemistry, 18(31):3713-3717.

[33]Zhang, S.S., 2006. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 8(9):1423-1428.

[34]Zhong, H.X., Zhao, C.B., Luo, H., et al., 2012. Novel organosilicon ionic liquid based electrolytes for supercapacitors. Acta Physico-Chimica Sinica, 28(11):2641-2647.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE