CLC number: TU433
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-06-28
Cited: 0
Clicked: 4401
Citations: Bibtex RefMan EndNote GB/T7714
Jie Xu, Chao Zhou. A simple model for the hysteretic elastic shear modulus of unsaturated soils[J]. Journal of Zhejiang University Science A, 2016, 17(7): 589-596.
@article{title="A simple model for the hysteretic elastic shear modulus of unsaturated soils",
author="Jie Xu, Chao Zhou",
journal="Journal of Zhejiang University Science A",
volume="17",
number="7",
pages="589-596",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600300"
}
%0 Journal Article
%T A simple model for the hysteretic elastic shear modulus of unsaturated soils
%A Jie Xu
%A Chao Zhou
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 7
%P 589-596
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600300
TY - JOUR
T1 - A simple model for the hysteretic elastic shear modulus of unsaturated soils
A1 - Jie Xu
A1 - Chao Zhou
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 7
SP - 589
EP - 596
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600300
Abstract: Considering the great importance of the elastic shear modulus G0 of unsaturated soils to the serviceability of many geo-structures in geo-energy and geo-environmental engineering, some semi-empirical models have been reported for the G0 of unsaturated soils. Existing models require at least three parameters and the calibration of the model parameters requires extensive time-consuming unsaturated soil tests. In this study, a simple semi-empirical model is proposed for the hysteretic G0 of unsaturated soils, requiring only two parameters. The constitutive variables of the mean Bishop’s stress and a bonding variable are adopted for considering the average stress between soil particles and the additional normal forces between soil particles provided by water menisci. The derived equation is applied to simulate the G0 of unsaturated silts and sands. Comparisons between the measured and calculated results demonstrate that the proposed equation is able to describe the influences of various factors on G0, including mean net stress, suction, wetting-drying, and void ratio.
[1]Atkinson, J.H., Sallfors, G., 1991. Experimental determination of stress-strain-time characteristics in laboratory and in-situ tests. Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, Italy, 3:915-956.
[2]Biglari, M., Mancuso, C., d'Onofrio, A., et al., 2011. Modelling the initial shear stiffness of unsaturated soils as a function of the coupled effects of the void ratio and the degree of saturation. Computers and Geotechnics, 38(5):709-720.
[3]Dong, Y., Lu, N., 2016. Correlation between small-strain shear modulus and suction stress in capillary regime under zero total stress conditions. Journal of Geotechnical and Geoenvironmental Engineering, 04016056.
[4]Dong, Y., Lu, N., McCartney, J.S., 2016. Unified model for small-strain shear modulus of variably saturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 04016039.
[5]Fisher, R.A., 1926. On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 16(03):492-505.
[6]Gallipoli, D., Gens, A., Sharma, R., et al., 2003. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour. Géotechnique, 53(1):123-135.
[7]Hardin, B., Black, W., 1966. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, 92(SM2):27-42.
[8]Jardine, R.J., 2011. Characterization of mudrocks: a practical application of advanced laboratory testing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(1):1-14.
[9]Khosravi, A., McCartney, J.S., 2012. Impact of hydraulic hysteresis on the small-strain shear modulus of low plasticity soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(11):1326-1333.
[10]Mancuso, C., Vassallo, R., d'Onofrio, A., 2002. Small strain behavior of a silty sand in controlled-suction resonant column torsional shear tests. Canadian Geotechnical Journal, 39(1):22-31.
[11]McDowell, G., Bolton, M., 2001. Micro mechanics of elastic soil. Soils and Foundations, 41(6):147-152.
[12]Ng, C.W.W., Yung, S.Y., 2008. Determination of the anisotropic shear stiffness of an unsaturated decomposed soil. Géotechnique, 58(1):23-35.
[13]Ng, C.W.W., Xu, J., Yung, S.Y., 2009. Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains. Canadian Geotechnical Journal, 46(9):1062-1076.
[14]Nyunt, T., Leong, E., Rahardjo, H., 2011. Strength and small-strain stiffness characteristics of unsaturated sand. Geotechnical Testing Journal, 34(5):551-561.
[15]Oh, W.T., Vanapalli, S.K., 2014. Semi-empirical model for estimating the small-strain shear modulus of unsaturated non-plastic sandy soils. Geotechnical and Geological Engineering, 32(2):259-271.
[16]Oztoprak, S., Bolton, M.D., 2013. Stiffness of sands through a laboratory test database. Géotechnique, 63(1):54-70.
[17]Sawangsuriya, A., Edil, T.B., Bosscher, P.J., 2009. Modulus-suction-moisture relationship for compacted soils in postcompaction state. Journal of Geotechnical and Geoenvironmental Engineering, 135(10):1390-1403.
[18]Shibuya, S., Hwang, S., Mitachi, T., 1997. Elastic shear modulus of soft clays from shear wave velocity measurement. Géotechnique, 47(3):593-601.
[19]Wheeler, S.J., Karube, D., 1996. Constitutive modelling. Proceedings of the First International Conference on Unsaturated Soil, Paris, France, 3:1323-1356.
[20]Wong, K.S., Mašín, D., Ng, C.W.W., 2014. Modelling of shear stiffness of unsaturated fine grained soils at very small strains. Computers and Geotechnics, 56:28-39.
[21]Zhou, C., Ng, C.W.W., Chen, R., 2015. A bounding surface plasticity model for unsaturated soil at small strains. International Journal for Numerical and Analytical Methods in Geomechanics, 39(11):1141-1164.
[22]Zhou, Y.G., Chen, Y.M., Asaka, Y., et al., 2008. Surface-mounted bender elements for measuring horizontal shear wave velocity of soils. Journal of Zhejiang University-SCIENCE A, 9(11):1490-1496.
Open peer comments: Debate/Discuss/Question/Opinion
<1>