Full Text:   <2941>

Summary:  <2092>

CLC number: TU471.7

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-06-15

Cited: 3

Clicked: 4441

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Teng-fei Wang

http://orcid.org/0000-0003-4079-0687

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.7 P.512-524

http://doi.org/10.1631/jzus.A1600407


Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region


Author(s):  Teng-fei Wang, Jian-kun Liu, Hua-gang Zhao, Ya-long Shang, Xiao-qiang Liu

Affiliation(s):  School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China; more

Corresponding email(s):   jkliu@bjtu.edu.cn

Key Words:  Seasonal frozen region, Screw pile, Frost heave, Similarity principle, Jacking-up


Teng-fei Wang, Jian-kun Liu, Hua-gang Zhao, Ya-long Shang, Xiao-qiang Liu. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. Journal of Zhejiang University Science A, 2016, 17(7): 512-524.

@article{title="Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region",
author="Teng-fei Wang, Jian-kun Liu, Hua-gang Zhao, Ya-long Shang, Xiao-qiang Liu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="7",
pages="512-524",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600407"
}

%0 Journal Article
%T Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region
%A Teng-fei Wang
%A Jian-kun Liu
%A Hua-gang Zhao
%A Ya-long Shang
%A Xiao-qiang Liu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 7
%P 512-524
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600407

TY - JOUR
T1 - Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region
A1 - Teng-fei Wang
A1 - Jian-kun Liu
A1 - Hua-gang Zhao
A1 - Ya-long Shang
A1 - Xiao-qiang Liu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 7
SP - 512
EP - 524
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600407


Abstract: 
The soils in seasonal frozen regions freeze and thaw frequently, causing severe frost heave and thaw settlement problems, which bring challenges to piles of photovoltaic stents. In this paper, laboratory tests are conducted with different types of screw piles under freezing conditions, with also using smooth piles for contrast. The aim is to simulate the freezing process of screw piles according to practical working conditions based on the similarity principle. Internal thermal resistance is ignored. The change laws of temperature, displacement, as well as the influence factors of types of screw piles are analyzed. The results indicate that: with a freezing depth of 30 cm, which is half of the pile length, large-double-bladed screw piles perform the best in anti-jacking-up, while all-bladed screw piles perform the worst, independent of the types of soil samples tested. The fitting relationship between jacking-up displacement and freezing depth is also proposed for each type of pile. Results obtained can provide an important reference to site construction in seasonal frozen regions.

季节性冻土区光伏支架螺旋桩抗冻拔试验研究

目的:基于相似性原理,模拟实际工况中的降温冻结过程;通过室内试验确定最优桩型,并推导冻拔量与冻深的定量关系。
创新点:1. 进行季节性冻土区螺旋桩的自由冻胀试验;2. 根据相似性原理,在室内试验过程中调整冷端温度与几何尺寸以缩短冻结时间;3. 推导得到6种桩型冻拔量与冻结深度的定量关系。
方法:1. 通过相似性原理确定试验条件,模拟实际工况中的降温冻结过程;2. 观测此过程中5种螺旋桩型的温度场、冻拔量和土压力随时间的变化规律,并设置一组光滑桩作为对比;3. 根据冻拔量大小选取最优桩型,并推导冻拔量与冻深的定量关系。
结论:1. 螺旋桩冻拔量小于光滑桩,验证了螺旋桩抗冻拔的有效性;采用不同土样有相同规律。2. 冻深达到0.9 m的季冻区,双螺旋大叶片桩抗冻拔效果最好;螺旋叶片建议设置在非冻区;冻拔量大小关系为:双螺旋大叶片桩<半螺旋大叶片桩<半螺旋小叶片桩<双螺旋小叶片桩<全螺旋桩<光滑桩。3. 得到6种桩型冻拔量与冻深的线性关系。4. 土中水开始冻结时土压力增大,含冰量稳定后土压力变化很小。

关键词:季节性冻土区;螺旋桩;冻胀;相似性原理;冻拔

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aksenov, V.I., Gevorkyan, S.G., Iospa, A.V., et al., 2014. Performance characteristics of boring piles in frozen soils. Soil Mechanics and Foundation Engineering, 51(4):204-211.

[2]Andersland, O.B., Ladanyi, B., 2004. Frozen Ground Engineering, 2nd Edition. The American Society of Civil Engineers, John Wiley & Sons, Inc., USA, p.3-7.

[3]Chen, G.S., Davis, D., Hulsey, J.L., 2012. Measurement of frozen soil–pile dynamic properties: a system identification approach. Cold Regions Science and Technology, 70:98-106.

[4]Crowther, G.S., 2013. Frozen soil strength criteria for lateral pile analysis. Journal of Cold Regions Engineering, 27(3):155-167.

[5]CSBTS (China State Bureau of Technical Supervision), 1999. Standard for Soil Test Method, GB/T 50123-1999. China Planning Press, Beijing, China (in Chinese).

[6]Dong, T.W., Liang, L., Wang, W., et al., 2008. Experimental analysis on the lamina-soils interaction in pullout screw pile foundation. Engineering Mechanics, 25(8):150-155 (in Chinese).

[7]Dong, T.W., Liang, L., Huang, L.Z., et al., 2009. Pullout test of screw pile foundation. Rock and Soil Mechanics, 30(1):186-190 (in Chinese).

[8]El Naggar, M.H., Youssef, M.A., Ahmed, M., 2007. Monotonic and cyclic lateral behavior of helical pile specialized connectors. Engineering Structures, 29(10):2635-2640.

[9]Gu, Q., Yang, Z.H., Peng, Y., 2016. Parameters affecting laterally loaded piles in frozen soils by an efficient sensitivity analysis method. Cold Regions Science and Technology, 121:42-51.

[10]Lee, C.W., Kim, Y.S., Park, S.Y., 2016. Development of prebored screw pile method and evaluation of its bearing characteristics. Marine Georesources & Geotechnology, 34(1):42-56.

[11]Li, N., Xu, B., 2008. A new type of pile used in frozen soil foundation. Cold Regions Science and Technology, 53(3):355-368.

[12]Li, Q., Wang, K.H., Xie, K.H., 2006. Dynamic response of vertically vibrating pile during freezing and thawing. Chinese Journal of Geotechnical Engineering, 28(1):48-55 (in Chinese).

[13]Li, Y.B., Zhang, H.R., Quan, K.J., 2012. Development of model test system for dynamic frozen soil-pile interaction. Chinese Journal of Geotechnical Engineering, 34(4):774-780 (in Chinese).

[14]Mendoza, C.C., Cunha, R., Lizcano, A., 2015. Mechanical and numerical behavior of groups of screw (type) piles founded in a tropical soil of the Midwestern Brazil. Computers and Geotechnics, 67:187-203.

[15]Mohajerani, A., Bosnjak, D., Bromwich, D., 2016. Analysis and design methods of screw piles: a review. Soils and Foundations, 56(1):115-128.

[16]Papadopoulou, K., Saroglou, H., Papadopoulos, V., 2014. Finite element analyses and experimental investigation of helical micropiles. Geotechnical and Geological Engineering, 32(4):949-963.

[17]Sakr, M., 2013. Comparison between high strain dynamic and static load tests of helical piles in cohesive soils. Soil Dynamics and Earthquake Engineering, 54:20-30.

[18]Tang, L.Y., Yang, G.S., Ye, W.J., 2015. Pile bearing capacity prediction considering air temperature change in cold regions. Chinese Journal of Underground Space and Engineering, 11(3):652-657 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE