CLC number: TU473.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-11-22
Cited: 0
Clicked: 4461
Citations: Bibtex RefMan EndNote GB/T7714
Min-jie Wen, Kui-hua Wang, Wen-bing Wu, Yun-peng Zhang, Hou-ren Xiong. Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory[J]. Journal of Zhejiang University Science A, 2021, 22(12): 992-1004.
@article{title="Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory",
author="Min-jie Wen, Kui-hua Wang, Wen-bing Wu, Yun-peng Zhang, Hou-ren Xiong",
journal="Journal of Zhejiang University Science A",
volume="22",
number="12",
pages="992-1004",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100084"
}
%0 Journal Article
%T Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory
%A Min-jie Wen
%A Kui-hua Wang
%A Wen-bing Wu
%A Yun-peng Zhang
%A Hou-ren Xiong
%J Journal of Zhejiang University SCIENCE A
%V 22
%N 12
%P 992-1004
%@ 1673-565X
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100084
TY - JOUR
T1 - Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory
A1 - Min-jie Wen
A1 - Kui-hua Wang
A1 - Wen-bing Wu
A1 - Yun-peng Zhang
A1 - Hou-ren Xiong
J0 - Journal of Zhejiang University Science A
VL - 22
IS - 12
SP - 992
EP - 1004
%@ 1673-565X
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100084
Abstract: Considering the thermal contact resistance and elastic wave impedance at the interface, in this paper we theoretically investigate the thermo-hydro-mechanical (THM) coupling dynamic response of bilayered saturated porous media. fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact. The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain. Furthermore, the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed. Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface. With increasing thermal contact resistance, the displacement, pore water pressure, and stress decrease gradually.
[1]Abbas IA, Marin M, 2018. Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(1):57-71.
[2]Abbas IA, Alzahrani FS, Elaiw A, 2019. A DPL model of photothermal interaction in a semiconductor material. Waves in Random and Complex Media, 29(2):328-343.
[3]Ai ZY, Wang LJ, 2015a. Axisymmetric thermal consolidation of multilayered porous thermoelastic media due to a heat source. International Journal for Numerical and Analytical Methods in Geomechanics, 39(17):1912-1931.
[4]Ai ZY, Wang LJ, 2015b. Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity. Acta Mechanica, 226(9):2939-2954.
[5]Ai ZY, Wang LJ, 2016. Three-dimensional thermo-hydro-mechanical responses of stratified saturated porothermoelastic material. Applied Mathematical Modelling, 40(21-22):8912-8933.
[6]Ai ZY, Ye Z, Zhao Z, et al., 2018. Time-dependent behavior of axisymmetric thermal consolidation for multilayered transversely isotropic poroelastic material. Applied Mathematical Modelling, 61:216-236.
[7]Alzahrani F, Abbas IA, 2020. Generalized thermoelastic interactions in a poroelastic material without energy dissipations. International Journal of Thermophysics, 41(7):95.
[8]Alzahrani F, Hobiny A, Abbas I, et al., 2020. An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry, 12(5):848.
[9]Bhatti MM, Marin M, Zeeshan A, et al., 2020. Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Frontiers in Physics, 8:95.
[10]Biot MA, 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3):240-253.
[11]Booker JR, Savvidou C, 1984. Consolidation around a spherical heat source. International Journal of Solids and Structures, 20(11-12):1079-1090.
[12]Carr EJ, March NG, 2018. Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions. Applied Mathematics and Computation, 333:286-303.
[13]Deswal S, Kalkal KK, 2013. Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures. International Journal of Heat and Mass Transfer, 66:451-460.
[14]Ezzat MA, El-Karamany AS, El-Bary AA, 2015. On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer. International Journal of Thermophysics, 36(7):1684-1697.
[15]Green AE, Lindsay KA, 1972. Thermoelasticity. Journal of Elasticity, 2(1):1-7.
[16]He TH, Zhang P, Xu C, et al., 2019. Transient response analysis of a spherical shell embedded in an infinite thermoelastic medium based on a memory-dependent generalized thermoelasticity. Journal of Thermal Stresses, 42(8):943-961.
[17]Hobiny A, Abbas I, 2020. Fractional order GN model on photo-thermal interaction in a semiconductor plane. Silicon, 12(8):1957-1964.
[18]Hobiny A, Abbas I, 2021. Analytical solutions of fractional bioheat model in a spherical tissue. Mechanics Based Design of Structures and Machines, 49(3):430-439.
[19]Hussein EM, 2015. Fractional order thermoelastic problem for an infinitely long solid circular cylinder. Journal of Thermal Stresses, 38(2):133-145.
[20]Hussein EM, 2018. Effect of the porosity on a porous plate saturated with a liquid and subjected to a sudden change in temperature. Acta Mechanica, 229(6):2431-2444.
[21]Kek-Kiong T, Sadhal SS, 1992. Thermal constriction resistance: effects of boundary conditions and contact geometries. International Journal of Heat and Mass Transfer, 35(6):1533-1544.
[22]Khan AA, Bukhari SR, Marin M, et al., 2019. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080.
[23]Levy A, Sorek S, Ben-Dor G, et al., 1995. Evolution of the balance equations in saturated thermoelastic porous media following abrupt simultaneous changes in pressure and temperature. Transport in Porous Media, 21(3):241-268.
[24]Li CL, Tian XG, He TH, 2020. Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain. Journal of Thermal Stresses, 43(7):895-928.
[25]Li CX, Xie KH, 2013. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):435-446.
[26]Li CX, Xie KH, Wang K, 2010. Analysis of 1D consolidation with non-Darcian flow described by exponent and threshold gradient. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(9):656-667.
[27]Li CX, Xie KH, Hu AF, et al., 2012. One-dimensional consolidation of double-layered soil with non-Darcian flow described by exponent and threshold gradient. Journal of Central South University, 19(2):562-571.
[28]Li CX, Wang CJ, Lu MM, et al., 2017. One-dimensional large-strain consolidation of soft clay with non-Darcian flow and nonlinear compression and permeability of soil. Journal of Central South University, 24(4):967-976.
[29]Li CX, Xiao JY, Wu WB, et al., 2020. Analysis of 1D large strain consolidation of structured marine soft clays. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):29-43.
[30]Liu GB, Xie KH, Zheng RY, 2009. Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium. Science in China Series E: Technological Sciences, 52(8):2373-2383.
[31]Liu GB, Liu XH, Ye RH, 2010a. The relaxation effects of a saturated porous media using the generalized thermoviscoelasticity theory. International Journal of Engineering Science, 48(9):795-808.
[32]Liu GB, Xie KH, Zheng RY, 2010b. Thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium. Applied Mathematical Modelling, 34(8):2203-2222.
[33]Lord HW, Shulman Y, 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5):299-309.
[34]Lu Z, Yao HL, Liu GB, 2010. Thermomechanical response of a poroelastic half-space soil medium subjected to time harmonic loads. Computers and Geotechnics, 37(3):343-350.
[35]Mei GX, Yin JH, 2008. Coupled model of consolidation and creep for consolidation test. Journal of Central South University, 15(S1):357-361.
[36]Mei GX, Chen QM, 2013. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions. Journal of Central South University, 20(8):2239-2244.
[37]Peng W, Ma YB, Li CL, et al., 2020. Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties. Journal of Thermal Stresses, 43(1):38-54.
[38]Saeed T, Abbas I, Marin M, 2020. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry, 12(3):488.
[39]Sherief HH, Hussein EM, 2012. A mathematical model for short-time filtration in poroelastic media with thermal relaxation and two temperatures. Transport in Porous Media, 91(1):199-223.
[40]Sherief HH, El-Latief AMA, 2013. Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 74:185-189.
[41]Sherief HH, El-Sayed AMA, El-Latief AMA, 2010. Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 47(2):269-275.
[42]Sherief HH, El-Latief AMA, 2015. A one-dimensional fractional order thermoelastic problem for a spherical cavity. Mathematics and Mechanics of Solids, 20(5):512-521.
[43]Singh B, 2013. Elastic wave propagation and attenuation in a generalized thermoporoelastic model. Multidiscipline Modeling in Materials and Structures, 9(2):256-267.
[44]Tao HB, Liu GB, Xie KH, et al., 2014. Characteristics of wave propagation in the saturated thermoelastic porous medium. Transport in Porous Media, 103(1):47-68.
[45]Wang LJ, Wang LH, 2020. Semianalytical analysis of creep and thermal consolidation behaviors in layered saturated clays. International Journal of Geomechanics, 20(4):06020001.
[46]Wang N, Wang KH, Wu WB, 2013. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(2):79-93.
[47]Wen MJ, Xu JM, Xiong HR, 2020. Thermo-hydro-mechanical dynamic response of a cylindrical lined tunnel in a poroelastic medium with fractional thermoelastic theory. Soil Dynamics and Earthquake Engineering, 130:105960.
[48]Xue ZN, Yu YJ, Li CL, et al., 2016. Application of fractional order theory of thermoelasticity to a bilayered structure with interfacial conditions. Journal of Thermal Stresses, 39(9):1017-1034.
[49]Xue ZN, Yu YJ, Tian XG, 2017. Transient responses of multi-layered structures with interfacial conditions in the generalized thermoelastic diffusion theory. International Journal of Mechanical Sciences, 131-132:63-74.
[50]Xue ZN, Yu YJ, Li XY, et al., 2019. Study of a generalized thermoelastic diffusion bi-layered structures with variable thermal conductivity and mass diffusivity. Waves in Random and Complex Media, 29(1):34-53.
[51]Xue ZN, Tian XG, Liu JL, 2020. Non-classical hygrothermal fracture behavior of a hollow cylinder with a circumferential crack. Engineering Fracture Mechanics, 224: 106805.
[52]Youssef HM, 2007. Theory of generalized porothermoelasticity. International Journal of Rock Mechanics and Mining Sciences, 44(2):222-227.
[53]Youssef HM, 2010. Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer, 132(6):061301.
[54]Yovanovich MM, 2005. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Transactions on Components and Packaging Technologies, 28(2):182-206.
[55]Yuan KL, Wen MJ, Wang WY, et al., 2021. Nonlocal thermodynamic response of thermal insulation layer-substrate wall system considering the temperature-dependent thermal material properties. Journal of Thermal Stresses, 44(2):214-235.
[56]Zhang YP, Liu H, Wu WB, et al., 2021. A 3D analytical model for distributed low strain test and parallel seismic test of pipe piles. Ocean Engineering, 225:108828.
[57]Zhang YP, Jiang GS, Wu WB, et al., 2022. Analytical solution for distributed torsional low strain integrity test for pipe pile. International Journal for Numerical and Analytical Methods in Geomechanics, 46(1):47-67.
Open peer comments: Debate/Discuss/Question/Opinion
<1>