Full Text:   <2194>

Summary:  <294>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-01-04

Cited: 0

Clicked: 8968

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei WANG

https://orcid.org/0000-0001-5437-2502

Yanfeng ZHENG

https://orcid.org/0000-0002-3278-1935

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2023 Vol.24 No.12 P.1120-1130

http://doi.org/10.1631/jzus.A2200311


GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures


Author(s):  Wei WANG, Yanfeng ZHENG, Jingzhe TANG, Chao YANG, Yaozhi LUO

Affiliation(s):  College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   yanfeng39@zju.edu.cn

Key Words:  Graphics processing unit (GPU), Parallel acceleration, Elastoplastic contact, Contact search, Finite particle method (FPM)


Wei WANG, Yanfeng ZHENG, Jingzhe TANG, Chao YANG, Yaozhi LUO. GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures[J]. Journal of Zhejiang University Science A, 2023, 24(12): 1120-1130.

@article{title="GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures",
author="Wei WANG, Yanfeng ZHENG, Jingzhe TANG, Chao YANG, Yaozhi LUO",
journal="Journal of Zhejiang University Science A",
volume="24",
number="12",
pages="1120-1130",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200311"
}

%0 Journal Article
%T GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures
%A Wei WANG
%A Yanfeng ZHENG
%A Jingzhe TANG
%A Chao YANG
%A Yaozhi LUO
%J Journal of Zhejiang University SCIENCE A
%V 24
%N 12
%P 1120-1130
%@ 1673-565X
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200311

TY - JOUR
T1 - GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures
A1 - Wei WANG
A1 - Yanfeng ZHENG
A1 - Jingzhe TANG
A1 - Chao YANG
A1 - Yaozhi LUO
J0 - Journal of Zhejiang University Science A
VL - 24
IS - 12
SP - 1120
EP - 1130
%@ 1673-565X
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200311


Abstract: 
A graphics processing unit (GPU)‍-accelerated vector-form particle-element method, i.‍e., the finite particle method (FPM), is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations. A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors. The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency. A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure. The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles. The proposed method is fully accelerated by GPU-based parallel computing. After verification, the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples. The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations. Therefore, the proposed method is shown to be effective and efficient.

结构三维弹塑性接触问题的图形处理器并行有限质点法求解

作者:汪伟1,2,郑延丰1,3,4,唐敬哲1,杨超1,4,罗尧治1,4
机构:1浙江大学,建筑工程学院,中国杭州,310058;2浙江大学,平衡建筑研究中心,中国杭州,310028;3浙江大学建筑设计研究院有限公司,中国杭州,310028;4浙江省空间结构重点实验室,中国杭州,310058
目的:结构的三维弹塑性接触问题通常包含强非线性,且计算比较耗时。为解决这类问题,本文提出基于图形处理器加速的有限质点法。
创新点:1.发展基于有限质点法的六面体缩减积分单元;2.提出结构的三维并行接触算法。
方法:1.发展基于有限质点法的六面体缩减积分单元,并采用沙漏控制技术,用于模拟结构的弹塑性行为;2.提出结构的三维并行接触算法,将包含接触面的三维空间分解为立方体单元格,仅在相邻单元格之间进行接触搜索,并使用链式数据结构存储接触质点;3.通过基于图形处理器的并行计算技术对算法进行加速。
结论:1.本文方法与有限元软件Abaqus/Explicit相比,在总计算时间和接触计算时间上分别提升效率约80倍和340倍;2.本文方法的有效性和计算效率都得到了验证。

关键词:图形处理器;并行加速;弹塑性接触;接触搜索;有限质点法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BartezzaghiA, CremonesiM, ParoliniN, et al., 2015. An explicit dynamics GPU structural solver for thin shell finite elements. Computers & Structures, 154:29-40.

[2]BensonDJ, HallquistJO, 1990. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141-163.

[3]BiabanakiSOR, KhoeiAR, WriggersP, 2014. Polygonal finite element methods for contact-impact problems on non-conformal meshes. Computer Methods in Applied Mechanics and Engineering, 269:198-221.

[4]BorjaRI, 2013. Plasticity: Modeling & Computation. Springer, Berlin, Germany.

[5]CaiY, WangGP, LiGY, et al., 2015. A high performance crashworthiness simulation system based on GPU. Advances in Engineering Software, 86:29-38.

[6]CaoXG, CaiY, CuiXY, 2020. A parallel numerical acoustic simulation on a GPU using an edge-based smoothed finite element method. Advances in Engineering Software, 148:102835.

[7]ChenH, LeiZ, ZangMY, 2014. LC-Grid: a linear global contact search algorithm for finite element analysis. Computational Mechanics, 54(5):1285-1301.

[8]ChengJ, GrossmanM, McKercherT, 2014. Professional CUDA C Programming. John Wiley & Sons, Indianapolis, USA.

[9]DongYK, WangD, RandolphMF, 2015. A GPU parallel computing strategy for the material point method. Computers and Geotechnics, 66:31-38.

[10]FlanaganDP, BelytschkoT, 1981. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering, 17(5):679-706.

[11]GaoB, WuJ, JiaPC, et al., 2022. Experimental and numerical investigation of the polyurea-coated ultra-high-performance concrete (UHPC) column under lateral impact loading. International Journal of Structural Stability and Dynamics, 22(5):2250037.

[12]HallquistJO, GoudreauGL, BensonDJ, 1985. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107-137.

[13]HeschC, BetschP, 2011. Transient 3D contact problems-NTS method: mixed methods and conserving integration. Computational Mechanics, 48(4):437-449.

[14]HouJM, ShiBS, LiangQH, et al., 2021. A graphics processing unit-based robust numerical model for solute transport driven by torrential flow condition. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(10):835-850.

[15]KangH, KimJ, 2015. Progressive collapse of steel moment frames subjected to vehicle impact. Journal of Performance of Constructed Facilities, 29(6):04014172.

[16]LacastaA, Morales-HernándezM, MurilloJ, et al., 2014. An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes. Advances in Engineering Software, 78:1-15.

[17]LuoYZ, YangC, 2014. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes exhibiting wrinkling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(5):331-350.

[18]NetoDM, OliveiraMC, MenezesLF, 2017. Surface smoothing procedures in computational contact mechanics. Archives of Computational Methods in Engineering, 24(1):37-87.

[19]SeitzA, PoppA, WallWA, 2015. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228-254.

[20]SharmaA, MishraR, JainS, et al., 2018. Deformation behavior of single and multi-layered materials under impact loading. Thin-Walled Structures, 126:193-204.

[21]SimoJC, HughesTJR, 1998. Computational Inelasticity. Springer, New York, USA.

[22]TangJZ, ZhengYF, YangC, et al., 2020. Parallelized implementation of the finite particle method for explicit dynamics in GPU. Computer Modeling in Engineering & Sciences, 122(1):5-31.

[23]WangSQ, ZhangQ, JiSY, 2021. GPU-based parallel algorithm for super-quadric discrete element method and its applications for non-spherical granular flows. Advances in Engineering Software, 151:102931.

[24]WangW, ZhengYF, TangJZ, et al., 2021. A GPU-based parallel algorithm for 2D large deformation contact problems using the finite particle method. Computer Modeling in Engineering & Sciences, 129(2):595-626.

[25]WriggersP, 2006. Computational Contact Mechanics. Springer, Berlin, Germany.

[26]YangC, ShenYB, LuoYZ, 2014. An efficient numerical shape analysis for light weight membrane structures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(4):255-271.

[27]YuY, LuoYZ, 2009. Finite particle method for kinematically indeterminate bar assemblies. Journal of Zhejiang University-SCIENCE A, 10(5):669-676.

[28]ZangMY, GaoW, LeiZ, 2011. A contact algorithm for 3D discrete and finite element contact problems based on penalty function method. Computational Mechanics, 48(5):541-550.

[29]ZhengYF, WanHP, ZhangJY, et al., 2021. Local-coordinate representation for spatial revolute clearance joints based on a vector-form particle-element method. International Journal of Structural Stability and Dynamics, 21(7):2150093.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE