Full Text:   <653>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-09-29

Cited: 0

Clicked: 908

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jien MA

https://orcid.org/0000-0001-9080-8668

Chao LUO

https://orcid.org/0000-0003-0756-1508

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2024 Vol.25 No.9 P.687-700

http://doi.org/10.1631/jzus.A2300449


Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding


Author(s):  Chao LUO, Bowen XU, Jien MA, Jiancheng ZHANG, Jiabo SHOU, Youtong FANG

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   majien@zju.edu.cn

Key Words:  High-voltage stator-cable windings, Superconducting machines, Inverted trapezoidal field winding, Total harmonic distortion


Share this article to: More |Next Article >>>

Chao LUO, Bowen XU, Jien MA, Jiancheng ZHANG, Jiabo SHOU, Youtong FANG. Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding[J]. Journal of Zhejiang University Science A, 2024, 25(9): 687-700.

@article{title="Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding",
author="Chao LUO, Bowen XU, Jien MA, Jiancheng ZHANG, Jiabo SHOU, Youtong FANG",
journal="Journal of Zhejiang University Science A",
volume="25",
number="9",
pages="687-700",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2300449"
}

%0 Journal Article
%T Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding
%A Chao LUO
%A Bowen XU
%A Jien MA
%A Jiancheng ZHANG
%A Jiabo SHOU
%A Youtong FANG
%J Journal of Zhejiang University SCIENCE A
%V 25
%N 9
%P 687-700
%@ 1673-565X
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2300449

TY - JOUR
T1 - Design of a 35 kV high-temperature superconducting synchronous machine with optimized field winding
A1 - Chao LUO
A1 - Bowen XU
A1 - Jien MA
A1 - Jiancheng ZHANG
A1 - Jiabo SHOU
A1 - Youtong FANG
J0 - Journal of Zhejiang University Science A
VL - 25
IS - 9
SP - 687
EP - 700
%@ 1673-565X
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2300449


Abstract: 
This paper proposes the application of high-voltage stator-cable windings in superconducting machines, based on the characteristics of strong magnetic fields and large air gaps. Cross-linked polyethylene cable winding can be employed to achieve a rated voltage of 35 kV in direct-current (DC)‍-field superconducting machines, thereby enabling a direct connection between the superconducting machine and the power grid, eliminating the need for transformers. We first, through finite element analysis, demonstrate that the proposed high-voltage high-temperature superconducting machine not only meets the requirement of a 35 kV-rated voltage, but also exhibits minimal flux leakage, torque fluctuation, and harmonic distortion. We then compare three candidate types to discuss the tradeoff between the multi-group superconducting field winding arrangement and machine performances. We propose inverted trapezoidal superconducting field winding as a promising candidate, because it has minimal superconductivity material usage, the largest safety margin for the superconducting coils (SCs), low thrust ripple, and low total harmonic distortion with the desired 35 kV-rated voltage. Finally, through large-scale design parameter sweeping, we show how we selected the optimal parameters for field winding and validated them by the finite element method.

35 kV高压高温超导同步电机设计与励磁绕组优化

作者:罗超1,许博文1,马吉恩1,张建承2,寿佳波1,方攸同1
机构:1浙江大学,电气工程学院,中国杭州,310027;2国网浙江省电力有限公司电力科学研究院,中国杭州,310014
目的:目前国内外的超导调相机均采用传统调相机的超导化,即仅用超导转子对传统常导转子进行了简单替换,所以超导调相机的优势未能完全发挥。基于超导电机磁场强、气隙大的优势,本文旨在将高压定子电缆绕组应用于超导电机中。
创新点:1.利用交联聚乙烯电缆绕组实现了直流励磁型超导电机35 kV的额定电压,且摒弃升压变压器进一步提高了超导电机系统的功率密度;2.在35 kV额定电压条件下,提出了新型倒梯形超导磁场绕组排列方式,实现了最少超导材料用量、小转矩脉动和小总谐波畸变率。
方法:1.通过理论分析计算,结合电机电磁性能得到应用于35 kV超高压超导电机的交联聚乙烯电缆绕组尺寸及规格;2.通过有限元分析,证明所设计的高压高温超导电机是否满足35 kV额定电压的要求,并验证超高压超导电机的可行性;3.研究比较三种候选类型超高压超导电机,讨论多组超导场绕组布置与电机性能之间的关系,并通过仿真验证倒梯形超导磁场绕组的性能。
结论:1.优化后的35 kV超高压超导调相机具有优异的电磁性能:其在保证额定电压的同时,使漏磁和转矩波动等都很小,可以用于直连电网而不需要变压器,并且可以实现更高的端电压。2.倒梯形励磁绕组排列的外加磁场最小,仅为3.8 T,且超导线圈匝数最小为1840,分别是其他两种绕组的92.4%和90.8%。3.优化后的超高压超导电机电压波形的总谐波畸变率小于0.3%;同时,强磁场的方向基本与超导线圈平行,这意味着优化后的电机安全裕度最大。

关键词:超导电机;高压定子电缆绕组;倒置型励磁绕组;谐波畸变率

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbrahamsenAB, MijatovicN, SeilerE, et al., 2009. Design study of 10 kW superconducting generator for wind turbine applications. IEEE Transactions on Applied Superconductivity, 19(3):1678-1682.

[2]BalachandranT, YoonA, LeeD, et al., 2022. Ultrahigh-field, high-efficiency superconducting machines for offshore wind turbines. IEEE Transactions on Magnetics, 58(2):8700805.

[3]BongU, AnS, VoccioJ, et al., 2019. A design study on 40 MW synchronous motor with no-insulation HTS field winding. IEEE Transactions on Applied Superconductivity, 29(5):5203706.

[4]CuccinielloN, LeeD, FengHY, et al., 2022. Superconducting niobium nitride: a perspective from processing, microstructure, and superconducting property for single photon detectors. Journal of Physics: Condensed Matter, 34(37):374003.

[5]DiasFJM, SoteloGG, de Andrade JúniorR, 2022. Performance comparison of superconducting machines with induction motors. IEEE Transactions on Applied Superconductivity, 32(7):5202805.

[6]DuanXH, ShiZJ, SongM, et al., 2022. Application prospects of the superconducting dynamic synchronous condenser. IEEE Transactions on Applied Superconductivity, 32(6):5202405.

[7]FangK, QiuLM, JiangX, et al., 2015. Temperature inhomogeneity in high capacity pulse tube cryocoolers. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(11):910-921.

[8]GaoCF, HeDX, ZhouYF, et al., 2019. A study on the space charge characteristics of AC sliced XLPE cables. IEEE Access, 7:20531-20537.

[9]HaoLL, SunYG, QiuAR, et al., 2012. Steady-state calculation and online monitoring of interturn short circuit of field windings in synchronous machines. IEEE Transactions on Energy Conversion, 27(1):128-138.

[10]HsiehMF, LinCK, LinIH, 2013. Design and analysis of high temperature superconducting generator for offshore wind turbines. IEEE Transactions on Magnetics, 49(5):1881-1884.

[11]KimYB, HempsteadCF, StrnadAR, 1964. Resistive states of hard superconductors. Reviews of Modern Physics, 36(1):43-45.

[12]KomiyaM, AikawaT, SasaH, et al., 2019. Design study of 10 MW REBCO fully superconducting synchronous generator for electric aircraft. IEEE Transactions on Applied Superconductivity, 29(5):5204306.

[13]KomiyaM, SugouchiR, SasaH, et al., 2020. Conceptual design and numerical analysis of 10 MW fully superconducting synchronous generators installed with a novel casing structure. IEEE Transactions on Applied Superconductivity, 30(4):5206607.

[14]KovalevK, IvanovN, TulinovaE, et al., 2019. Methodic of calculation of fully HTS salient-pole electrical machine. Przegląd Elektrotechniczny, 95(1):213-218.

[15]LeeSB, LeeTH, JungEH, et al., 2014. Development of 250 kV HVDC XLPE cable system in Korea. Proceedings of the International Symposium on Electrical Insulating Materials, p.334-337.

[16]LiY, QiuL, ZhiYJ, et al., 2023. An overview of bearing voltages and currents in rail transportation traction motors. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(3):226-242.

[17]LiuXH, WangYY, LuoXM, et al., 2022. Stator single-line-to-ground fault protection for powerformers based on HSGC and CNN. Frontiers in Energy Research, 10:998797.

[18]LiuYZ, GrilliF, CaoJW, et al., 2021. An electromagnetic design of a fully superconducting generator for wind application. Energies, 14(22):7811.

[19]ManolopoulosCD, IacchettiMF, SmithAC, et al., 2020. Comparison between coreless and yokeless stator designs in fully-superconducting propulsion motors. IEEE Transactions on Applied Superconductivity, 30(6):5207407.

[20]MassonPJ, LuongoCA, 2005. High power density superconducting motor for all-electric aircraft propulsion. IEEE Transactions on Applied Superconductivity, 15(2):2226-2229.

[21]MetwallyIA, RadwanRM, Abou-ElyaziedAM, 2008. Powerformers: a breakthrough of high-voltage power generators. IEEE Potentials, 27(3):37-44.

[22]MillerTJE, HughesA, 1977. Comparative design and performance analysis of air-cored and iron-cored synchronous machines. Proceedings of the Institution of Electrical Engineers, 124(2):127-132.

[23]MuttaqiKM, IslamR, SutantoD, 2019. Future power distribution grids: integration of renewable energy, energy storage, electric vehicles, superconductor, and magnetic bus. IEEE Transactions on Applied Superconductivity, 29(2):3800305.

[24]OishiI, NishijimaK, 2002. Summary of development of 70 MW class model superconducting generator––research and development of superconducting for electric power application. Cryogenics, 42(3-4):157-167.

[25]PerersR, LundinU, LeijonM, 2007. Development of synchronous generators for Swedish hydropower: a review. Renewable and Sustainable Energy Reviews, 11(5):1008-1017.

[26]SeoK, YoonJ, ChaJ, et al., 2023. Design optimization of HTS field coils for high power density motors based on continuum sensitivity analysis. IEEE Transactions on Applied Superconductivity, 33(5):5202805.

[27]SumptionMD, MurphyJ, SusnerM, et al., 2020. Performance metrics of electrical conductors for aerospace cryogenic motors, generators, and transmission cables. Cryogenics, 111:103171.

[28]SunEQ, 2022. Multi-scale nonlinear stress analysis of Nb3Sn superconducting accelerator magnets. Superconductor Science and Technology, 35(4):045019.

[29]TeraoY, SetaA, OhsakiH, et al., 2019. Lightweight design of fully superconducting motors for electrical aircraft propulsion systems. IEEE Transactions on Applied Superconductivity, 29(5):5202305.

[30]TianQ, LinXN, 2006. A new novel differential protection scheme for a high-voltage, cable-wound generator. IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, p.1-6.

[31]WangL, LienSY, ProkhorovAV, 2015. Stability improvement of a large-scale offshore wind farm using a superconducting magnetic energy-storage unit and a superconducting fault-current limiter. IEEE Industry Applications Society Annual Meeting, p.1-7.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE