Full Text:   <1047>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-11-24

Received: 2024-12-10

Revision Accepted: 2025-03-26

Crosschecked: 2025-11-25

Cited: 0

Clicked: 1060

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Anfeng HU

https://orcid.org/0000-0002-3278-0238

Zhirong XIAO

https://orcid.org/0000-0003-3723-3978

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2025 Vol.26 No.11 P.1034-1051

http://doi.org/10.1631/jzus.A2400568


Machine learning for soil parameter inversion enhanced with Bayesian optimization


Author(s):  Anfeng HU, Chi WANG, Senlin XIE, Zhirong XIAO, Tang LI, Ang XU

Affiliation(s):  Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   100106@zust.edu.cn

Key Words:  ABAQUS software, Bayesian optimization, Machine learning (ML) algorithms, Parameter inversion, Settlement prediction


Anfeng HU, Chi WANG, Senlin XIE, Zhirong XIAO, Tang LI, Ang XU. Machine learning for soil parameter inversion enhanced with Bayesian optimization[J]. Journal of Zhejiang University Science A, 2025, 26(11): 1034-1051.

@article{title="Machine learning for soil parameter inversion enhanced with Bayesian optimization",
author="Anfeng HU, Chi WANG, Senlin XIE, Zhirong XIAO, Tang LI, Ang XU",
journal="Journal of Zhejiang University Science A",
volume="26",
number="11",
pages="1034-1051",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2400568"
}

%0 Journal Article
%T Machine learning for soil parameter inversion enhanced with Bayesian optimization
%A Anfeng HU
%A Chi WANG
%A Senlin XIE
%A Zhirong XIAO
%A Tang LI
%A Ang XU
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 11
%P 1034-1051
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2400568

TY - JOUR
T1 - Machine learning for soil parameter inversion enhanced with Bayesian optimization
A1 - Anfeng HU
A1 - Chi WANG
A1 - Senlin XIE
A1 - Zhirong XIAO
A1 - Tang LI
A1 - Ang XU
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 11
SP - 1034
EP - 1051
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2400568


Abstract: 
Machine learning (ML) has strong potential for soil settlement prediction, but determining hyperparameters for ML models is often intricate and laborious. Therefore, we apply bayesian optimization to determine the optimal hyperparameter combinations, enhancing the effectiveness of ML models for soil parameter inversion. The ML models are trained using numerical simulation data generated with the modified Cam-Clay (MCC) model in ABAQUS software, and their performance is evaluated using ground settlement monitoring data from an airport runway. Five optimized ML models—decision tree (DT), random forest (RF), support vector regression (SVR), deep neural network (DNN), and one-dimensional convolutional neural network (1D-CNN)—are compared in terms of their accuracy for soil parameter inversion and settlement prediction. The results indicate that bayesian optimization efficiently utilizes prior knowledge to identify the optimal hyperparameters, significantly improving model performance. Among the evaluated models, the 1D-CNN achieves the highest accuracy in soil parameter inversion, generating settlement predictions that closely match real monitoring data. These findings demonstrate the effectiveness of the proposed approach for soil parameter inversion and settlement prediction, and reveal how bayesian optimization can refine the model selection process.

基于贝叶斯优化增强的机器学习方法在土体参数反演中的应用研究

作者:胡安峰1,王池1,2,谢森林1,肖志荣3,李唐1,徐昂1
机构:1浙江大学,滨海和城市岩土工程研究中心,中国杭州,310058;2浙江大学,软弱土与环境土工教育部重点实验室,中国杭州,310058;3浙江科技大学,土木与建筑工程学院,中国杭州,310023
目的:土体参数标定困难是数值模拟方法在软土地基沉降预测中遇到的难题。本研究构建5种机器学习模型,通过贝叶斯优化快速获取模型最优超参数配置,比选最优超参数配置下各模型在测试集和实际监测数据集上的泛化性能,旨在获取高精度、优性能的土体参数反演模型。
创新点:1.结合数值模拟生成的高保真数据和厦门翔安机场的实测数据构建数据集,兼顾数据规模和真实性;2.通过贝叶斯优化,在有限试验次数内快速获取各模型的最优超参数配置;3.建立5种基于沉降数据集的机器学习模型,并通过多组试验比选获取最优超参数配置下用于土体参数反演的最优机器学习模型。
方法:1.采用修正剑桥模型,通过调整有限元建模(FEM)脚本中土体参数的变化范围在ABAQUS软件中生成足量的用于训练机器学习模型的高保真数据集;2.建立5种基于沉降数据集的土体参数反演机器学习模型,并通过贝叶斯优化获取各模型的最优超参数配置,比较最优超参数配置下各模型在测试集下的预测精度;3.为进一步验证所构建的机器学习模型在实测数据集上的泛化性能,以厦门翔安机场的实际沉降监测数据为基础,利用优化后的各机器学习模型反演沉降预测中所需的关键土体参数;4.将反演得到的土体参数输入数值计算模型,对比沉降计算曲线和实际监测曲线的误差,比选获得最优土体参数反演机器学习模型。
结论:1.贝叶斯优化是高效的全局优化算法,可快速获取机器学习模型的最优超参数配置;2.机器学习模型架构的复杂度会直接影响其土体参数的反演精度,且集成多个决策树的随机森林模型的预测精度较单一决策树模型有极大提升;3.一维卷积神经网络模型的预测精度最好,可以可靠、准确地反演土体参数,为沉降的精准预测提供了有力支持。

关键词:ABAQUS软件;贝叶斯优化;机器学习算法;参数反演;沉降预测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbbasA, VantasselJP, CoxBR, et al., 2023. A frequency-velocity CNN for developing near-surface 2D vs images from linear-array, active-source wavefield measurements. Computers and Geotechnics, 156:105305.

[2]AkibaT, SanoS, YanaseT, et al., 2019. Optuna: a next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, p.2623-2631.

[3]AsaokaA, 1978. Observational procedure of settlement prediction. Soils and Foundations, 18(4):87-101.

[4]AsterisPG, SkentouAD, BardhanA, et al., 2021. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement and Concrete Research, 145:106449.

[5]AsterisPG, KaroglouM, SkentouAD, et al., 2024. Predicting uniaxial compressive strength of rocks using ANN models: incorporating porosity, compressional wave velocity, and Schmidt hammer data. Ultrasonics, 141:107347.

[6]BardhanA, OzcanNT, AsterisPG, et al., 2024. Hybrid ensemble paradigms for estimating tunnel boring machine penetration rate for the 10-km long Bahce-Nurdagi twin tunnels. Engineering Applications of Artificial Intelligence, 136:108997.

[7]BenzaamiaA, GhriciM, RebouhR, et al., 2024a. Predicting the shear strength of rectangular RC beams strengthened with externally-bonded FRP composites using constrained monotonic neural networks. Engineering Structures, 313:118192.

[8]BenzaamiaA, GhriciM, RebouhR, et al., 2024b. Predicting the compressive strength of CFRP-confined concrete using deep learning. Engineering Structures, 319:118801.

[9]BergstraJ, BengioY, 2012. Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13:281-305. https://dl.acm.org/doi/10.5555/2188385.2188395

[10]BoserBE, GuyonIM, VapnikVN, 1992. A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, p.144-152.

[11]BreimanL, 2001. Random forests. Machine Learning, 45(1):5-32.

[12]ChaabanM, HeiderY, SunW, et al., 2024. A machine-learning supported multi-scale LBM-TPM model of unsaturated, anisotropic, and deformable porous materials. International Journal for Numerical and Analytical Methods in Geomechanics, 48(4):889-910.

[13]ChenRP, ZhangP, KangX, et al., 2019. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods. Soils and Foundations, 59(2):284-295.

[14]ChengY, WangJF, HeY, 2023. Prediction models of newmark sliding displacement of slopes using deep neural network and mixed-effect regression. Computers and Geotechnics, 156:105264.

[15]FayedHA, AtiyaAF, 2019. Speed up grid-search for parameter selection of support vector machines. Applied Soft Computing, 80:202-210.

[16]GlabK, WehrmeyerG, ThewesM, et al., 2024. Predictive machine learning in earth pressure balanced tunnelling for main drive torque estimation of tunnel boring machines. Tunnelling and Underground Space Technology, 146:105642.

[17]GuX, WangL, OuQ, et al., 2023. Reliability assessment of rainfall-induced slope stability using Chebyshev–Galerkin–KL expansion and Bayesian approach. Canadian Geotechnical Journal, 60(12):1909-1922.

[18]HasanipanahM, Noorian-BidgoliM, Jahed ArmaghaniD, et al., 2016. Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers, 32(4):705-715.

[19]HuAF, LiT, ChenY, et al., 2021. Deep learning for preprocessing of measured settlement data. Journal of Hunan University (Natural Sciences), 48(9):43-51 (in Chinese).

[20]HuAF, XieSL, LiT, et al., 2023. Soil parameter inversion modeling using deep learning algorithms and its application to settlement prediction: a comparative study. Acta Geotechnica, 18(10):5597-5618.

[21]HuangZK, ZhangDM, XieXC, 2022. A practical ANN model for predicting the excavation-induced tunnel horizontal displacement in soft soils. Underground Space, 7(2):278-293.

[22]JinYF, YinZY, ZhouWH, et al., 2019a. Bayesian model selection for sand with generalization ability evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 43(14):2305-2327.

[23]JinYF, YinZY, ZhouWH, et al., 2019b. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method. Acta Geotechnica, 14(6):1925-1947.

[24]JonesDR, 2001. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345-383.

[25]LesterAM, KouretzisGP, SloanSW, 2019. Finite element modelling of prefabricated vertical drains using 1D drainage elements with attached smear zones. Computers and Geotechnics, 107:235-254.

[26]LewisRJ, 2000. An introduction to classification and regression tree (CART) analysis. Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California.

[27]LiuMP, ZhuangPZ, LaiFW, 2024. A Bayesian optimization-genetic algorithm-based approach for automatic parameter calibration of soil models: application to clay and sand model. Computers and Geotechnics, 176:106717.

[28]MaZC, HeXH, YanPC, et al., 2023. A fast and flexible algorithm for microstructure reconstruction combining simulated annealing and deep learning. Computers and Geotechnics, 164:105755.

[29]MahmoodzadehA, MohammadiM, DaraeiA, et al., 2020. Forecasting maximum surface settlement caused by urban tunneling. Automation in Construction, 120:103375.

[30]MengJJ, MattssonH, LaueJ, 2021. Three-dimensional slope stability predictions using artificial neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 45(13):1988-2000.

[31]PanY, WuMZ, ZhangLM, et al., 2023. Time series clustering-enabled geological condition perception in tunnel boring machine excavation. Automation in Construction, 153:104954.

[32]QiCC, TangXL, 2018. Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Computers & Industrial Engineering, 118:112-122.

[33]SnoekJ, LarochelleH, AdamsRP, 2012. Practical Bayesian optimization of machine learning algorithms. Proceedings of the 26th International Conference on Neural Information Processing Systems, p.2951-2959.

[34]SridharanA, MurthyNS, PrakashK, 1987. Rectangular hyperbola method of consolidation analysis. Géotechnique, 37(3):355-368.

[35]TanBK, WangD, ShiJL, et al., 2024. Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm. Journal of Zhejiang University-SCIENCE A, 25(9):732-748.

[36]TangLB, NaS, 2021. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets. Journal of Rock Mechanics and Geotechnical Engineering, 13(6):1274-1289.

[37]VictoriaAH, MaragathamG, 2021. Automatic tuning of hyperparameters using Bayesian optimization. Evolving Systems, 12(1):217-223.

[38]WangJJ, VanapalliS, 2024. A framework for estimating the matric suction in unsaturated soils using multiple artificial intelligence techniques. International Journal for Numerical and Analytical Methods in Geomechanics, 48(11):2854-2879.

[39]WangLQ, WangL, ZhangWG, et al., 2024. Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties. Journal of Rock Mechanics and Geotechnical Engineering, 16(10):3951-3960.

[40]WijesingheDR, DysonA, YouG, et al., 2022. Simultaneous slope design optimisation and stability assessment using a genetic algorithm and a fully automatic image-based analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 46(15):2868-2892.

[41]WuSB, YangZF, DingXL, et al., 2020. Two decades of settlement of Hong Kong International Airport measured with multi-temporal InSAR. Remote Sensing of Environment, 248:111976.

[42]XieSL, HuAF, XiaoZR, et al., 2024. PINN-based approach to the consolidation analysis of visco-elastic soft soil around twin tunnels. Tunnelling and Underground Space Technology, 153:105981.

[43]XieSL, HuAF, WangMH, et al., 2025. 1DCNN-based prediction methods for subsequent settlement of subgrade with limited monitoring data. European Journal of Environmental and Civil Engineering, 29(4):759-784.

[44]YaoYP, HuangJ, WangND, et al., 2020. Prediction method of creep settlement considering abrupt factors. Transportation Geotechnics, 22:100304.

[45]YeXW, JinT, ChenYM, 2022. Machine learning-based forecasting of soil settlement induced by shield tunneling construction. Tunnelling and Underground Space Technology, 124:104452.

[46]YeXW, ZhangXL, ChenYB, et al., 2024. Prediction of maximum upward displacement of shield tunnel linings during construction using particle swarm optimization-random forest algorithm. Journal of Zhejiang University-SCIENCE A, 25(1):1-17.

[47]YinZY, JinYF, ShenJS, et al., 2018. Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. International Journal for Numerical and Analytical Methods in Geomechanics, 42(1):70-94.

[48]ZhangDM, ShenYM, HuangZK, et al., 2022. Auto machine learning-based modelling and prediction of excavation-induced tunnel displacement. Journal of Rock Mechanics and Geotechnical Engineering, 14(4):1100-1114.

[49]ZhangLM, WuXG, JiWY, et al., 2017. Intelligent approach to estimation of tunnel-induced ground settlement using wavelet packet and support vector machines. Journal of Computing in Civil Engineering, 31(2):04016053.

[50]ZhangP, YinZY, JinYF, et al., 2021. Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms. Geoscience Frontiers, 12(1):441-452.

[51]ZhangQ, SuQ, ZhangZY, et al., 2024. Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-ν-SVR method. Journal of Rock Mechanics and Geotechnical Engineering, 16(1):317-332.

[52]ZhangRH, LiYQ, GohATC, et al., 2021. Analysis of ground surface settlement in anisotropic clays using extreme gradient boosting and random forest regression models. Journal of Rock Mechanics and Geotechnical Engineering, 13(6):1478-1484.

[53]ZhangWG, WuCZ, ZhongHY, et al., 2021. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1):469-477.

[54]ZhangWG, LiuSL, WangLQ, et al., 2024. The overall stability of a partially unstable reservoir bank slope to water fluctuation and rainfall based on Bayesian theory. Landslides, 21(8):2021-2032.

[55]ZhouZ, ChenY, LiuZZ, et al., 2020. Theoretical prediction model for deformations caused by construction of new tunnels undercrossing existing tunnels based on the equivalent layered method. Computers and Geotechnics, 123:103565.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE