
CLC number:
On-line Access: 2025-06-19
Received: 2025-02-25
Revision Accepted: 2025-05-22
Crosschecked: 2025-09-19
Cited: 0
Clicked: 935
Zhuoyue GU, Suhui ZHANG, Wentao XIONG, Baodan ZHAO, Dawei DI. Efficient and stable perovskite light-emitting diodes[J]. Journal of Zhejiang University Science A, 2025, 26(9): 832-852.
@article{title="Efficient and stable perovskite light-emitting diodes",
author="Zhuoyue GU, Suhui ZHANG, Wentao XIONG, Baodan ZHAO, Dawei DI",
journal="Journal of Zhejiang University Science A",
volume="26",
number="9",
pages="832-852",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2500056"
}
%0 Journal Article
%T Efficient and stable perovskite light-emitting diodes
%A Zhuoyue GU
%A Suhui ZHANG
%A Wentao XIONG
%A Baodan ZHAO
%A Dawei DI
%J Journal of Zhejiang University SCIENCE A
%V 26
%N 9
%P 832-852
%@ 1673-565X
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2500056
TY - JOUR
T1 - Efficient and stable perovskite light-emitting diodes
A1 - Zhuoyue GU
A1 - Suhui ZHANG
A1 - Wentao XIONG
A1 - Baodan ZHAO
A1 - Dawei DI
J0 - Journal of Zhejiang University Science A
VL - 26
IS - 9
SP - 832
EP - 852
%@ 1673-565X
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2500056
Abstract: perovskite light-emitting diodes (PeLEDs) have shown outstanding potential in next-generation lighting and display owing to the advantages of broad spectral tunability, excellent color purity, high photoluminescence quantum yields (PLQYs), and low processing cost. Device efficiency and stability are crucial indicators to evaluate whether a PeLED can meet commercial application requirements. In this review, we first discuss strategies for achieving high external quantum efficiencies (EQEs), including controlling charge injection and balance, enhancing radiative recombination, and improving light outcoupling efficiency. Next, we review recent advances in operational stability of PeLEDs and emphasize the mechanisms of degradation in PeLEDs, including ion migration, structural transformations, chemical interactions, and thermal degradation. Through detailed analysis and discussion, this review aims to facilitate progress and innovation in highly efficient and stable PeLEDs, which have significant promise for display and solid-state lighting technologies, as well as other emerging applications.
[1]AwaisM, KirschRL, YedduV, et al., 2021. Tin halide perovskites going forward: frost diagrams offer hints. ACS Materials Letters, 3(3):299-307.
[2]BaiWH, XuanTT, ZhaoHY, et al., 2023. Perovskite light‐emitting diodes with an external quantum efficiency exceeding 30%. Advanced Materials, 35(39):2302283.
[3]BallJM, PetrozzaA, 2016. Defects in perovskite-halides and their effects in solar cells. Nature Energy, 1(11):16149.
[4]BanMY, ZouYT, RivettJPH, et al., 2018. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nature Communications, 9(1):3892.
[5]BiCH, YaoZW, HuJC, et al., 2023. Suppressing Auger recombination of perovskite quantum dots for efficient pure-blue-light-emitting diodes. ACS Energy Letters, 8(1):731-739.
[6]BowmanAR, AnayaM, GreenhamNC, et al., 2020. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key. Physical Review Letters, 125(6):067401.
[7]CaoY, WangNN, TianH, et al., 2018. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 562(7726):249-253.
[8]ChenB, RuddPN, YangS, et al., 2019. Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 48(14):3842-3867.
[9]ChenJ, MaPC, ChenWJ, et al., 2021. Overcoming outcoupling limit in perovskite light-emitting diodes with enhanced photon recycling. Nano Letters, 21(19):8426-8432.
[10]ChenST, NurmikkoA, 2017. Stable green perovskite vertical-cavity surface-emitting lasers on rigid and flexible substrates. ACS Photonics, 4(10):2486-2494.
[11]ChenWJ, ChenJ, GuLH, et al., 2022. Overcoming the outcoupling limit of perovskite light-emitting diodes with artificially formed nanostructures. Advanced Materials, 34(49):2207180.
[12]ChenWJ, HuangZM, YaoHT, et al., 2023. Highly bright and stable single-crystal perovskite light-emitting diodes. Nature Photonics, 17(5):401-407.
[13]ChenZM, LiZC, HopperTR, et al., 2021. Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 84(4):046401.
[14]ChengL, JiangT, CaoY, et al., 2020. Multiple-quantum-well perovskites for high-performance light-emitting diodes. Advanced Materials, 32(15):1904163.
[15]ChengLP, HuangJS, ShenY, et al., 2019. Efficient CsPbBr3 perovskite light‐emitting diodes enabled by synergetic morphology control. Advanced Optical Materials, 7(4):1801534.
[16]ChoC, GreenhamNC, 2021. Computational study of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Advanced Science, 8(4):2003559.
[17]ChoC, ZhaoBD, TainterGD, et al., 2020. The role of photon recycling in perovskite light-emitting diodes. Nature Communications, 11(1):611.
[18]ChoH, JeongSH, ParkMH, et al., 2015. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 350(6265):1222-1225.
[19]ChungI, SongJ, ImJ, et al., 2012. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. Journal of the American Chemical Society, 134(20):8579-8587.
[20]CuiJY, LiuY, DengYZ, et al., 2021. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 7(41):eabg8458.
[21]DingS, WangQQ, GuWC, et al., 2024. Phase dimensions resolving of efficient and stable perovskite light-emitting diodes at high brightness. Nature Photonics, 18(4):363-370.
[22]DongJC, LuFF, HanDY, et al., 2022. Deep-blue electroluminescence of perovskites with reduced dimensionality achieved by manipulating adsorption-energy differences. Angewandte Chemie International Edition, 61(40):e202210322.
[23]DongJC, ZhaoB, JiHY, et al., 2025. Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes. Nature Nanotechnology, 20(4):507-514.
[24]DongQ, LeiL, MendesJ, et al., 2020. Operational stability of perovskite light emitting diodes. Journal of Physics: Materials, 3(1):012002.
[25]FabiniDH, StoumposCC, LauritaG, et al., 2016. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angewandte Chemie International Edition, 55(49):15392-15396.
[26]FakharuddinA, QiuWM, CroesG, et al., 2019. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Advanced Functional Materials, 29(37):1904101.
[27]FakharuddinA, GangishettyMK, Abdi-JalebiM, et al., 2022. Perovskite light-emitting diodes. Nature Electronics, 5(4):203-216.
[28]FengSC, ShenY, HuXM, et al., 2024. Efficient and stable red perovskite light-emitting diodes via thermodynamic crystallization control. Advanced Materials, 36(44):2410255.
[29]FieramoscaA, de MarcoL, PassoniM, et al., 2018. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photonics, 5(10):4179-4185.
[30]GaoY, CaiQT, HeYF, et al., 2024. Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects. Science Advances, 10(29):eado5645.
[31]GuanX, LiYQ, MengYY, et al., 2024. Targeted elimination of tetravalent-Sn-induced defects for enhanced efficiency and stability in lead-free NIR-II perovskite LEDs. Nature Communications, 15(1):9913.
[32]GuerreroA, YouJB, ArandaC, et al., 2016. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 10(1):218-224.
[33]GuoBB, LaiRC, JiangSJ, et al., 2022. Ultrastable near-infrared perovskite light-emitting diodes. Nature Photonics, 16(9):637-643.
[34]GuoYW, ApergiS, LiN, et al., 2021. Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nature Communications, 12(1):644.
[35]GuoZY, ZhangY, WangBZ, et al., 2021. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Advanced Materials, 33(40):2102246.
[36]HanBN, YuanSC, CaiB, et al., 2021. Green perovskite light‐emitting diodes with 200 hours stability and 16% efficiency: cross‐linking strategy and mechanism. Advanced Functional Materials, 31(26):2011003.
[37]HanDY, WangJ, AgostaL, et al., 2023. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature, 622(7983):493-498.
[38]HassanY, ParkJH, CrawfordML, et al., 2021. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 591(7848):72-77.
[39]JenaAK, KulkarniA, MiyasakaT, 2019. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 119(5):3036-3103.
[40]JiangYZ, CuiMH, LiSS, et al., 2021. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications, 12(1):336.
[41]KarlssonM, YiZY, ReichertS, et al., 2021. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nature Communications, 12(1):361.
[42]KimH, ZhaoLF, PriceJS, et al., 2018. Hybrid perovskite light emitting diodes under intense electrical excitation. Nature Communications, 9(1):4893.
[43]KimJS, HeoJM, ParkGS, et al., 2022. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature, 611(7937):688-694.
[44]KimYH, KimS, KakekhaniA, et al., 2021. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics, 15(2):148-155.
[45]KongLM, SunYQ, ZhaoB, et al., 2024. Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure. Nature, 631(8019):73-79.
[46]KuangCY, HuZJ, YuanZC, et al., 2021. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule, 5(3):618-630.
[47]LeeS, ParkJH, NamYS, et al., 2018. Growth of nanosized single crystals for efficient perovskite light-emitting diodes. ACS Nano, 12(4):3417-3423.
[48]LeeS, KimDB, YuJC, et al., 2019. Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Advanced Materials, 31(20):1805244.
[49]LiHJ, ZhuXF, ZhangDS, et al., 2024. Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes. Nature Communications, 15(1):6561.
[50]LiHM, LinH, OuyangD, et al., 2021. Efficient and stable red perovskite light‐emitting diodes with operational stability >300 h. Advanced Materials, 33(15):2008820.
[51]LiMM, YangYG, KuangZY, et al., 2024. Acceleration of radiative recombination for efficient perovskite LEDs. Nature, 630(8017):631-635.
[52]LiN, SongL, JiaYH, et al., 2020. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Advanced Materials, 32(17):1907786.
[53]LiN, JiaYH, GuoYW, et al., 2022. Ion migration in perovskite light‐emitting diodes: mechanism, characterizations, and material and device engineering. Advanced Materials, 34(19):2108102.
[54]LiYQ, GuanX, ZhaoYP, et al., 2025. Modulation of charge transport layer for perovskite light‐emitting diodes. Advanced Materials, 37(25):2410535.
[55]LiZQ, RenZW, LiangQ, et al., 2024. Grain orientation management and recombination suppression for ultra-stable PeLEDs with record brightness. Joule, 8(4):1176-1190.
[56]LinKB, XingJ, QuanLN, et al., 2018. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 562(7726):245-248.
[57]LinY, BaiY, FangYJ, et al., 2017. Suppressed ion migration in low-dimensional perovskites. ACS Energy Letters, 2(7):1571-1572.
[58]LiuAQ, BiCH, TianJJ, 2022. All solution-processed high performance pure-blue perovskite quantum-dot light-emitting diodes. Advanced Functional Materials, 32(44):2207069.
[59]LiuMM, WanQ, WangHM, et al., 2021. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 15(5):379-385.
[60]LiuXK, XuWD, BaiS, et al., 2021. Metal halide perovskites for light-emitting diodes. Nature Materials, 20(1):10-21.
[61]LiuXP, LuoDY, LuZH, et al., 2023. Stabilization of photoactive phases for perovskite photovoltaics. Nature Reviews Chemistry, 7(7):462-479.
[62]LiuZ, QiuWD, PengXM, et al., 2021. Perovskite light‐emitting diodes with EQE exceeding 28% through a synergetic dual‐additive strategy for defect passivation and nanostructure regulation. Advanced Materials, 33(43):2103268.
[63]LovaP, CortecchiaD, KrishnamoorthyHNS, et al., 2018. Engineering the emission of broadband 2D perovskites by polymer distributed Bragg reflectors. ACS Photonics, 5(3):867-874.
[64]LuoC, YanC, LiW, et al., 2020. Ultrafast thermodynamic control for stable and efficient mixed halide perovskite nanocrystals. Advanced Functional Materials, 30(19):2000026.
[65]LuoDY, SuR, ZhangW, et al., 2019. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 5(1):44-60.
[66]LuoY, KongLM, WangL, et al., 2022. A multifunctional ionic liquid additive enabling stable and efficient perovskite light-emitting diodes. Small, 18(19):2200498.
[67]MaDX, LinKB, DongYT, et al., 2021. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature, 599(7886):594-598.
[68]MiaoYF, ChengL, ZouW, et al., 2020. Microcavity top-emission perovskite light-emitting diodes. Light: Science & Applications, 9(1):89.
[69]MinH, ChangJ, TongYF, et al., 2023. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nature Photonics, 17(9):755-760.
[70]NenonDP, PresslerK, KangJ, et al., 2018. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. Journal of the American Chemical Society, 140(50):17760-17772.
[71]ParkJ, KimJ, YunHS, et al., 2023. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958):724-730.
[72]PrakasamV, TorderaD, BolinkHJ, et al., 2019. Degradation mechanisms in organic lead halide perovskite light‐emitting diodes. Advanced Optical Materials, 7(22):1900902.
[73]ProppeAH, WaltersGW, AlsalloumAY, et al., 2020. Transition dipole moments of n=1, 2, and 3 perovskite quantum wells from the optical stark effect and many-body perturbation theory. The Journal of Physical Chemistry Letters, 11(3):716-723.
[74]QuanLN, ZhaoYB, García de ArquerFP, et al., 2017. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Letters, 17(6):3701-3709.
[75]QuanLN, MaDX, ZhaoYB, et al., 2020. Edge stabilization in reduced-dimensional perovskites. Nature Communications, 11(1):170.
[76]RenZW, YuJH, QinZT, et al., 2021. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers. Advanced Materials, 33(1):2005570.
[77]RenZX, GuoBB, LiuSN, et al., 2024. Bright and stable red perovskite LEDs under high current densities. ACS Applied Materials & Interfaces, 16(7):9012-9019.
[78]RichterJM, Abdi-JalebiM, SadhanalaA, et al., 2016. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 7(1):13941.
[79]ShenXY, KangK, YuZK, et al., 2023. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule, 7(2):272-308.
[80]ShenY, ChengLP, LiYQ, et al., 2019. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Advanced Materials, 31(24):1901517.
[81]SiJJ, LiuY, HeZF, et al., 2017. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X=Br, I) nanoplates with controlled thicknesses. ACS Nano, 11(11):11100-11107.
[82]SnaithHJ, AbateA, BallJM, et al., 2014. Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters, 5(9):1511-1515.
[83]StranksSD, HoyeRLZ, DiDW, et al., 2019. The physics of light emission in halide perovskite devices. Advanced Materials, 31(47):1803336.
[84]SunCJ, JiangYZ, CuiMH, et al., 2021. High-performance large-area quasi-2D perovskite light-emitting diodes. Nature Communications, 12(1):2207.
[85]SunSQ, TaiJW, HeW, et al., 2024. Enhancing light outcoupling efficiency via anisotropic low refractive index electron transporting materials for efficient perovskite light-emitting diodes. Advanced Materials, 36(24):2400421.
[86]SunYQ, GeLS, DaiLJ, et al., 2023. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature, 615(7954):830-835.
[87]TanZK, MoghaddamRS, LaiML, et al., 2014. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 9(9):687-692.
[88]TangWD, LiuSN, ZhangG, et al., 2025. Lead‐free perovskite light‐emitting diodes. Advanced Materials, 37(25):2411020.
[89]TravisW, GloverENK, BronsteinH, et al., 2016. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science, 7(7):4548-4556.
[90]VashishthaP, HalpertJE, 2017. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chemistry of Materials, 29(14):5965-5973.
[91]WangCH, HanDB, WangJH, et al., 2020. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nature Communications, 11(1):6428.
[92]WangHR, GongXW, ZhaoDW, et al., 2020. A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule, 4(9):1977-1987.
[93]WangL, XiaoL, GuHS, et al., 2019. Advances in alternating current electroluminescent devices. Advanced Optical Materials, 7(7):1801154.
[94]WangNN, ChengL, GeR, et al., 2016. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 10(11):699-704.
[95]WarbyJH, WengerB, RamadanAJ, et al., 2020. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS Nano, 14(7):8855-8865.
[96]WatanabeS, ChengT, Tumen-UlziiG, et al., 2019. Excited-state stability of quasi-two-dimensional metal halide perovskite films under optical and electrical excitations. Applied Physics Letters, 115(23):233502.
[97]WeiKY, ZhouT, JiangYZ, et al., 2025. Perovskite heteroepitaxy for high-efficiency and stable pure-red LEDs. Nature, 638(8052):949-956.
[98]WooSJ, KimJS, LeeTW, 2021. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nature Photonics, 15(9):630-634.
[99]XiaoZG, KernerRA, ZhaoLF, et al., 2017. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nature Photonics, 11(2):108-115.
[100]XingGC, WuB, WuXY, et al., 2017. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 8(1):14558.
[101]XiongWT, ZouC, TangWD, et al., 2023. Efficient and bright blue perovskite LEDs enabled by a carbazole-phosphonic acid interface. ACS Energy Letters, 8(7):2897-2903.
[102]XiongWT, TangWD, ZhangG, et al., 2024. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 633(8029):344-350.
[103]XuH, WangXC, LiY, et al., 2020. Prominent heat dissipation in perovskite light-emitting diodes with reduced efficiency droop for silicon-based display. The Journal of Physical Chemistry Letters, 11(9):3689-3698.
[104]XuWD, HuQ, BaiS, et al., 2019. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 13(6):418-424.
[105]YangDX, ZhangGL, LaiRC, et al., 2021. Germanium-lead perovskite light-emitting diodes. Nature Communications, 12(1):4295.
[106]YangY, XuS, NiZY, et al., 2021. Highly efficient pure‐blue light‐emitting diodes based on rubidium and chlorine alloyed metal halide perovskite. Advanced Materials, 33(33):2100783.
[107]YaoZW, BiCH, LiuAQ, et al., 2022. High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy, 95:106974.
[108]YooJJ, SeoG, ChuaMR, et al., 2021. Efficient perovskite solar cells via improved carrier management. Nature, 590(7847):587-593.
[109]YuZK, JeongWH, KangK, et al., 2022. A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue perovskite light emitting diodes. Journal of Materials Chemistry A, 10(26):13928-13935.
[110]YuanMJ, QuanLN, CominR, et al., 2016. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 11(10):872-877.
[111]YuanS, DaiLJ, SunYQ, et al., 2024. Efficient blue electroluminescence from reduced-dimensional perovskites. Nature Photonics, 18(5):425-431.
[112]YuanZC, MiaoYF, HuZJ, et al., 2019. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nature Communications, 10(1):2818.
[113]ZengJJ, SunXY, LiuY, et al., 2024. Switchable interfacial reaction enables bright and stable deep-red perovskite light-emitting diodes. Nature Photonics, 18(4):325-333.
[114]ZhangL, YuanF, XiJ, et al., 2020. Suppressing ion migration enables stable perovskite light‐emitting diodes with all‐inorganic strategy. Advanced Functional Materials, 30(40):2001834.
[115]ZhangQ, SongYH, HaoJM, et al., 2022. α-BaF2 nanoparticle substrate-enabled γ-CsPbI3 heteroepitaxial growth for efficient and bright deep-red light-emitting diodes. Journal of the American Chemical Society, 144(18):8162-8170.
[116]ZhangXL, XuB, WangWG, et al., 2017. Plasmonic perovskite light-emitting diodes based on the Ag–CsPbBr3 system. ACS Applied Materials & Interfaces, 9(5):4926-4931.
[117]ZhaoBD, BaiS, KimV, et al., 2018. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 12(12):783-789.
[118]ZhaoBD, LianYX, CuiLS, et al., 2020. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nature Electronics, 3(11):704-710.
[119]ZhaoBD, VasilopoulouM, FakharuddinA, et al., 2023. Light management for perovskite light-emitting diodes. Nature Nanotechnology, 18(9):981-992.
[120]ZhaoBD, GuoBB, XingSY, et al., 2024. Highly stable perovskite light-emitting diodes. Matter, 7(3):772-793.
[121]ZhaoLF, LeeKM, RohK, et al., 2019. Improved outcoupling efficiency and stability of perovskite light‐emitting diodes using thin emitting layers. Advanced Materials, 31(2):1805836.
[122]ZhaoLF, RohK, KacmoliS, et al., 2020. Thermal management enables bright and stable perovskite light‐emitting diodes. Advanced Materials, 32(25):2000752.
[123]ZhaoXF, TanZK, 2020. Large-area near-infrared perovskite light-emitting diodes. Nature Photonics, 14(4):215-218.
[124]ZhengXP, YuanS, LiuJK, et al., 2020. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes. ACS Energy Letters, 5(3):793-798.
[125]ZhouLF, YanMX, LuoGJ, et al., 2023. Self-assembled molecule doping enables high-efficiency hole-transport-layer-free perovskite light-emitting diodes. Advanced Functional Materials, 33(36):2303370.
[126]ZhouYH, WangCY, YuanS, et al., 2022. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4%. Journal of the American Chemical Society, 144(40):18470-18478.
[127]ZouC, LinLY, 2020. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Optics Letters, 45(17):4786-4789.
[128]ZouC, LiuY, GingerDS, et al., 2020. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano, 14(5):6076-6086.
[129]ZouY, YuanZ, BaiS, et al., 2019. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 5:100028.
Open peer comments: Debate/Discuss/Question/Opinion
<1>