CLC number: S1
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 5
Clicked: 5983
Qiu-xiang YI, Jing-feng HUANG, Fu-min WANG, Xiu-zhen WANG. Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale[J]. Journal of Zhejiang University Science B, 2008, 9(5): 378-384.
@article{title="Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale",
author="Qiu-xiang YI, Jing-feng HUANG, Fu-min WANG, Xiu-zhen WANG",
journal="Journal of Zhejiang University Science B",
volume="9",
number="5",
pages="378-384",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0730019"
}
%0 Journal Article
%T Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale
%A Qiu-xiang YI
%A Jing-feng HUANG
%A Fu-min WANG
%A Xiu-zhen WANG
%J Journal of Zhejiang University SCIENCE B
%V 9
%N 5
%P 378-384
%@ 1673-1581
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0730019
TY - JOUR
T1 - Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale
A1 - Qiu-xiang YI
A1 - Jing-feng HUANG
A1 - Fu-min WANG
A1 - Xiu-zhen WANG
J0 - Journal of Zhejiang University Science B
VL - 9
IS - 5
SP - 378
EP - 384
%@ 1673-1581
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0730019
Abstract: To further develop the methods to remotely sense the biochemical content of plant canopies, we report the results of an experiment to estimate the concentrations of three biochemical variables of corn, i.e., nitrogen (N), crude fat (EE) and crude fiber (CF) concentrations, by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed, and a set of estimation models were established using curve-fitting analyses. Coefficient of determination (R2), root mean square error (RMSE) and relative error of prediction (REP) of estimation models were calculated for the model quality evaluations, and the possible optimum estimation models of three biochemical variables were proposed, with R2 being 0.891, 0.698 and 0.480 for the estimation models of N, EE and CF concentrations, respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation, and that the first derivative reflectances at 759 nm, 1954 nm and 2370 nm were most suitable to develop the estimation models of N, EE and CF concentrations, respectively. In addition, the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained, especially for nitrogen (r=0.948).
[1] Blackmer, T.M., Schepers, J.S., 1994. Techniques for monitoring crop nitrogen status in corn. Commun. Soil Sci. Plant Anal., 25:1791-1800.
[2] Blackmer, T.M., Schepers, J.S., Varvel, G.E., Waler-Schea, E.A., 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J., 88:1-5.
[3] Casanova, D., Epema, G.F., Goudriaan, J., 1998. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crop. Res., 55(1-2):83-92.
[4] Chen, L., Huang, J.F., Wang, F.M., Tang, Y.L., 2007. Comparison between back propagation neural network and regression models for estimation of pigment content in rice leaves and panicles using hyperspectral data. Int. J. Remote Sens., 28(16):3457-3478.
[5] Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sens. Environ., 30(3):271-278.
[6] Curran, P.J., Kupiec, J.A., 1995. Imaging Spectrometry: A New Tool for Ecology. In: Danson, F.M., Plummer, S.E. (Eds.), Advances in Environmental Remote Sensing. Wiley, Chichester, p.71-78.
[7] Demetriades-Shah, T.H., Steven, M.D., Clark, J.A., 1990. High resolution derivative spectral in remote sensing. Remote Sens. Environ., 33(1):55-64.
[8] Diker, K., Bausch, W.C., 2003. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys. Eng., 85(4):437-447.
[9] Gamon, J.A., Qiu, H., 1999. Ecological Applications of Remote Sensing at Multiple Scales. In: Pugnaire, F.I., Valladares, F. (Eds.), Handbook of Functional Plant Ecology. Marcel Dekker, New York, p.805-846.
[10] Graeff, S., Claupein, W., 2003. Quantifying nitrogen status of corn (Zea may L.) in the field by reflectance measurements. Eur. J. Agron., 19(4):611-618.
[11] Hinzman, L.D., Bauer, M.E., Daughtry, C.S.T., 1986. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ., 19(1):47-61.
[12] Jackson, R.D., Huete, A.R., 1991. Interpreting vegetation indices. Prev. Vet. Med., 11(3-4):185-200.
[13] Kokaly, R.F., 2001. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ., 75(2):153-161.
[14] Kvalheim, O.M., 1987. Latent-structure decompositions (projections) of multivariate data. Chemometr. Intell. Lab., 2(4):283-290.
[15] McMurtrey, R.F.III, Chappella, E.W., Kim, M.S., Meisinger, J.J., 1994. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with active induced fluoresing and passive reflectance measurements. Remote Sens. Environ., 47(1):36-44.
[16] Peterson, D.L., Hubbard, G.S., 1991. Scientific issues and potential remote sensing requirement for plant biochemical content. J. Imaging Sci. Technol., 36:446-456.
[17] Stone, M.L., Soile, J.B., Raun, W.R., 1996. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. Am. Soc. Agric. En., 39:1623-1631.
[18] Strachan, I.B., Pattey, E., Boisvert, J.B., 2002. Impact of nitrogen and environment conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ., 80(2):213-224.
[19] Treitz, P.M., Howarth, P.J., 1999. Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Prog. Phys. Geogr., 23(3):359-390.
[20] Wang, J.Q., Yu, J.G., 2001. Analysis and Test of Feedstuff. China Metrology Publishing House, Beijing, p.40-45 (in Chinese).
[21] Wessman, C.A., 1994. Remote Sensing and the Estimation of Ecosystem Parameters and Functions. In: Hill, J., Megier, J. (Eds.), Imaging Spectrometry—A Tool for Environmental Observations. Kluwer, Dordrecht, p.39-56.
[22] Wood, C.W., Reeves, D.W., Himelrick, D.G., 1993. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: a review. Proc. Agron. Soc. N. Z., 23:1-9.
[23] Wulder, M., 1998. Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr., 22(4):449-476.
[24] Yoder, B.J., Pettigrew-Crosby, R.E., 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spctra (400-2500 nm) at leaf and canopy scales. Remote Sens. Environ., 53(3):199-211.
[25] Zhang, J.H., Wang, K., Bailey, J.S., Wang, R.C., 2006. Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16(1):108-117.
[26] Zhang, L.P., Zheng, L.F., Tong, Q.X., 1997. Estimating biological variable using high spectral data. J. Remote Sens., 1(2):110-113 (in Chinese).
[27] Zhao, C.J., Liu, L.Y., Wang, J.H., Huang, W.J., Song, X.Y., Li, C.J., 2005. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Observ. Geoinf., 7(1):1-9.
Open peer comments: Debate/Discuss/Question/Opinion
<1>