CLC number: Q81
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-12-28
Cited: 1
Clicked: 6929
Eduardo GONZALEZ, Hans LILJENSTRÖM, Yusely RUIZ, Guang LI. A biologically inspired model for pattern recognition[J]. Journal of Zhejiang University Science B, 2010, 11(2): 115-126.
@article{title="A biologically inspired model for pattern recognition",
author="Eduardo GONZALEZ, Hans LILJENSTRÖM, Yusely RUIZ, Guang LI",
journal="Journal of Zhejiang University Science B",
volume="11",
number="2",
pages="115-126",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0910427"
}
%0 Journal Article
%T A biologically inspired model for pattern recognition
%A Eduardo GONZALEZ
%A Hans LILJENSTRÖ
%A M
%A Yusely RUIZ
%A Guang LI
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 2
%P 115-126
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0910427
TY - JOUR
T1 - A biologically inspired model for pattern recognition
A1 - Eduardo GONZALEZ
A1 - Hans LILJENSTRÖ
A1 - M
A1 - Yusely RUIZ
A1 - Guang LI
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 2
SP - 115
EP - 126
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0910427
Abstract: In this paper, a novel bionic model and its performance in pattern recognition are presented and discussed. The model is constructed from a bulb model and a three-layered cortical model, mimicking the main features of the olfactory system. The olfactory bulb and cortex models are connected by feedforward and feedback fibers with distributed delays. The Breast Cancer Wisconsin dataset consisting of data from 683 patients divided into benign and malignant classes is used to demonstrate the capacity of the model to learn and recognize patterns, even when these are deformed versions of the originally learned patterns. The performance of the novel model was compared with three artificial neural networks (ANNs), a back-propagation network, a support vector machine classifier, and a radial basis function classifier. All the ANNs and the olfactory bionic model were tested in a benchmark study of a standard dataset. Experimental results show that the bionic olfactory system model can learn and classify patterns based on a small training set and a few learning trials to reflect biological intelligence to some extent.
[1] Amaral, D.G., Insausti, R., Cowan, W.M., 1987. The entorhinal cortex of the monkey: I. Cytoarchitectonic organization. The Journal of Comparative Neurology, 264(3):326-355.
[2] Aronsson, P., Liljenström, H., 2001. Effects of non-synaptic neuronal interaction in cortex on synchronization and learning. Biosystems, 63(1-3):43-56.
[3] Brunzell, H., Eriksson, J., 2000. Feature reduction for classification of multidimensional data. Pattern Recognition, 33(10):1741-1748.
[4] Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3):273-297.
[5] de Araujo, I.E., Rolls, E.T., Velazco, M.I., Margot, C., Cayeux, I., 2005. Cognitive modulation of olfactory processing. Neuron, 46(4):671-679.
[6] Doty, R.L., 2003. Handbook of Olfaction and Gustation. Dekker, New York, p.235-276.
[7] Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Recognition. John Wiley & Sons, New York, p.282-349.
[8] Freeman, W.J., 1975. Mass Action in the Nervous System. Academic Press, New York, p.64-120.
[9] Freeman, W.J., 1979. Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics, 33(4):237-247.
[10] Freeman, W.J., 1987. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics, 56(2-3):139-150.
[11] Freeman, W.J., Skarda, C.A., 1985. Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Research Reviews, 10(3):147-175.
[12] Freeman, W.J., Barrie, J.M., 1994. Chaotic Oscillations and the Genesis of Meaning in Cerebral Cortex. In: Buzsaki, G., Llinas, R., Singer, W., Berthoz, A., Christen, Y. (Eds.), Temporal Coding in the Brain. Springer, Berlin, p.13-37.
[13] Gonzalez, E., Li, G., Ruiz, Y., Zhang, J., 2007. A Tea Classification Method Based on an Olfactory System Model. Advances in Cognitive Neurodynamics ICCN 2007. Springer, the Netherlands, p.747-751.
[14] Haberly, L.B., 2001. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chemical Senses, 26(5):551-576.
[15] Hasselmo, M.E., Wilson, M.A., Anderson, B.P., Bower, J.M., 1990. Associative memory function in piriform (olfactory) cortex: computational modeling and neuropharmacology. Cold Spring Harbor Symposia on Quantitative Biology, 55:599-610.
[16] Jefferis, G.S., Marin, E.C., Stocker, R.F., Luo, L., 2001. Target neuron prespecification in the olfactory map of Drosophila. Nature, 414(6860):204-208.
[17] Johnson, D.M.G., Illig, K.R., Behan, M., Haberly, L.B., 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. The Journal of Neuroscience, 20(18):6974-6982.
[18] Kay, L., Shimoide, K., Freeman, W.J., 1995. Comparison of EEG time series from rat olfactory system with model composed of nonlinear coupled oscillators. International Journal of Bifurcation and Chaos, 5(3):849-858.
[19] Kowianski, P., Lipowska, M., Morys, J., 1999. The piriform cortex and the endopiriform nucleus in the rat reveal generally similar pattern of connections. Folia Morphol (Warsz), 58(1):9-19.
[20] Kozma, R., Freeman, W.J., Erdi, P., 2003. Basic principles of the KIV model and its application to the navigation problem. Journal of Integrative Neuroscience, 2(1):125-140.
[21] Kruskal, W.H., Wallis, W.A., 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260):583-621.
[22] Leon, M., Johnson, B.A., 2003. Olfactory coding in the mammalian olfactory bulb. Brain Research Reviews, 42(1):23-32.
[23] Li, G., Jin, Z., Freeman, W.J., 2007. Mandarin Digital Speech Recognition Based on a Chaotic Neural Network and Fuzzy C-means Clustering. Fuzzy Systems Conference. FUZZ-IEEE 2007, July 23-26, 2007, p.1-5.
[24] Li, X., Li, G., Wang, L., Freeman, W.J., 2006. A study on a bionic pattern classifier based on olfactory neural system. International Journal of Bifurcation and Chaos, 16(8):2425-2434.
[25] Li, Z., 1990. A model of olfactory adaptation and sensitivity enhancement in the olfactory bulb. Biological Cybernetics, 62(4):349-361.
[26] Li, Z., Hopfield, J.J., 1989. Modeling the olfactory bulb and its neural oscillatory processings. Biological Cybernetics, 61(5):379-392.
[27] Liljenström, H., 1991. Modeling the dynamics of olfactory cortex using simplified network units and realistic architecture. International Journal of Neural Systems, 2(1/2):1-15.
[28] Liljenström, H., 2003. Neural stability and flexibility: a computational approach. Neuropsychopharmacology, 28(S1):S64-S73.
[29] Liljenström, H., Hasselmo, M.E., 1995. Cholinergic modulation of cortical oscillatory dynamics. Journal of Neurophysiology, 74(1):288-297.
[30] Liljenström, H., Wu, X.B., 1995. Noise-enhanced performance in a cortical associative memory model. International Journal of Neural Systems, 6(1):19-29.
[31] Lowe, G., 2003. Electrical signaling in the olfactory bulb. Current Opinion in Neurobiology, 13(4):476-481.
[32] Ma, Z., Krings, A.W., 2009. Insect sensory systems inspired computing and communications. Ad Hoc Networks, 7(4):742-755.
[33] Margalit, M., 1988. Surface Fitting and Compression of Two-dimensional Scattered Data. International Conference on Acoustics, Speech, and Signal Processing, ICASSP-88.
[34] Mombaerts, P., Wang, F., Dulac, C., Chao, S.K., Nemes, A., Mendelsohn, M., Edmondson, J., Axel, R., 1996. Visualizing an olfactory sensory map. Cell, 87(4):675-686.
[35] Mori, K., Nagao, H., Yoshihara, Y., 1999. The olfactory bulb: coding and processing of odor molecule information. Science, 286(5440):711-715.
[36] Patterson, D.W., 1996. Artificial Neural Networks: Theory and Applications. Singapore, Prentice Hall.
[37] Principe, J.C., Tavares, V.G., Harris, J.G., Freeman, W.J., 2001. Design and implementation of a biologically realistic olfactory cortex in analog VLSI. Proceedings IEEE, 89(7):1030-1051.
[38] Renals, S., 1989. Radial basis function network for speech pattern classification. Electronics Letters, 25(7):437-439.
[39] Shepherd, G.M., 1979. The Synaptic Organization of the Brain. Oxford University Press, New York, p.377-416.
[40] Taha, I., Ghosh, J., 1997. Characterization of the Wisconsin Breast Cancer Database Using a Hybrid Symbolic-Connectionist System. Proceedings of ANNIE'96.
[41] Wang, L., Li, G., Liu, X., Wang, B., Freeman, W.J., 2005. Study of a Chaotic Olfactory Neural Network Model and Its Applications on Pattern Classification. Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Jan. 17-18, J2006, p.3640-3643.
[42] Wilson, M.A., Bower, J.M., 1989. The Simulation of Large-scale Neural Networks. Methods in Neuronal Modeling: From Synapses to Networks. MIT Press, p.291-333.
[43] Wilson, M.A., Bower, J.M., 1992. Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. Journal of Neurophysiology, 67(4):981-995.
[44] Wolberg, W.H., 1991. Wisconsin Diagnostic Breast Cancer, Available from http://archive.ics.uci.edu/ml/datasets [Accessed on Aug. 6, 2008].
[45] Wu, C., Chen, P., Yuan, Q., Wang, P., 2009. Response enhancement of olfactory sensory neurons-based biosensors for odorant detection. J. Zhejiang Univ. Sci. B, 10(4):285-290.
Open peer comments: Debate/Discuss/Question/Opinion
<1>