Full Text:   <3451>

CLC number: Q93

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2010-01-26

Cited: 26

Clicked: 6842

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2010 Vol.11 No.3 P.151-168

http://doi.org/10.1631/jzus.B1000007


Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi


Author(s):  Lea Atanasova, Irina S. Druzhinina

Affiliation(s):  Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, A-1060 Vienna, Austria

Corresponding email(s):   druzhini@mail.zserv.tuwien.ac.at

Key Words:  Biolog Phenotype MicroArray, Mitosporic fungi, Carbon metabolism, Trichoderma, Aspergillus, Biotechnology


Share this article to: More |Next Article >>>

Lea Atanasova, Irina S. Druzhinina. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi[J]. Journal of Zhejiang University Science B, 2010, 11(3): 151-168.

@article{title="Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi",
author="Lea Atanasova, Irina S. Druzhinina",
journal="Journal of Zhejiang University Science B",
volume="11",
number="3",
pages="151-168",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000007"
}

%0 Journal Article
%T Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi
%A Lea Atanasova
%A Irina S. Druzhinina
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 3
%P 151-168
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000007

TY - JOUR
T1 - Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi
A1 - Lea Atanasova
A1 - Irina S. Druzhinina
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 3
SP - 151
EP - 168
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000007


Abstract: 
Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Antal, Z., Kredics, L., Dóczi, I., Manczinger, L., Kevei, F., Nagy, E., 2002. The physiological features of opportunistic Trichoderma strains. Acta Microbiol. Immunol. Hung., 49:393.

[2]Arnone, M.I., Dmochowski, I.J., Gache, C., 2004. Using reporter genes to study cis-regulatory elements. Methods Cell Biol., 74:621-652.

[3]Arst, H.N.Jr., Cove, D.J., 1973. Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet., 126(2):111-141.

[4]Arst, H.N.Jr., Scazzocchio, C., 1975. Initiator constitutive mutation with an up-promoter effect in Aspergillus nidulans. Nature, 254(5495):31-34.

[5]Avalos, J., Geever, R.F., Case, M.E., 1989. Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr. Genet., 16(5-6):369-372.

[6]Avery, R.K., 2004. Prophylactic strategies before solid-organ transplantation. Curr. Opin. Infect. Dis., 17(4):353-356.

[7]Bailey, C., Arst, H.N.Jr., 1975. Carbon catabolite repression in Aspergillus nidulans. Eur. J. Biochem., 51(2):573-577.

[8]Barredo, J.L., Alvarez, E., Cantoral, J.M., Diez, B., Martin, J.F., 1988. Glucokinase-deficient mutant of Penicillium chrysogenum is derepressed in glucose catabolite regulation of both beta-galactosidase and penicillin biosynthesis. Antimicrob. Agents Chemother., 32(7):1061-1067.

[9]Blayer, S., Woodley, J.M., Dawson, M.J., Lilly, M.D., 1999. Alkaline biocatalysis for the direct synthesis of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). Biotechnol Bioeng., 66(2):131-136.

[10]Bochner, B.R., 1988. New methods aid microbial identification. Bio/Technology, 6(7):756.

[11]Bochner, B.R., 1989. Sleuthing out bacterial identities. Nature, 339(6220):157-158.

[12]Bochner, B.R., 2003. New technologies to assess genotype-phenotype relationships. Nature Rev. Genet., 4(4): 309-314.

[13]Bochner, B.R., Gadzinski, P., Panomitros, E., 2001. Phenotype MicroArrays for high-throughput phenotypic testing and assay of gene function. Genome Res., 11(7):1246-1255.

[14]Brunner, K., Peterbauer, C.K., Mach, R.L., Lorito, M., Zeilinger, S., Kubicek, C.P., 2003. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr. Genet., 43(4):289-295.

[15]Brunner, K., Omann, M., Pucher, M.E., Delic, M., Lehner, S., Domnanich, P., Kratochwill, K., Druzhinina, I., Zeilinger, S., 2008. Trichoderma G protein-coupled receptors: genome analysis and functional characterization of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet., 54(6):283-299.

[16]Caddick, M.X., Peters, D., Platt, A., 1994. Nitrogen regulation in fungi. Antonie Van Leeuwenhoek, 65(3):169-177.

[17]Campos-Herrero, M.I., Bordes, A., Perera, A., Ruiz, M.C., Fernandez, A., 1996. Trichoderma koningii peritonitis in a patient undergoing peritoneal dialysis. Clin. Microbiol. Newslett., 18(19):150-151.

[18]Carsolio, C., Benhamou, N., Haran, S., Cortes, C., Gutierrez, A., Chet, I., Herrera-Estrella, A., 1999. Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl. Environ. Microbiol., 65(3):929-935.

[19]Casas-Flores, S., Rios-Momberg, M., Bibbins, M., Ponce-Noyola, P., Herrera-Estrella, A., 2004. BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology, 150(Pt 11):3561-3569.

[20]Chaveroche, M.K., Ghigo, J.M., d′Enfert, C., 2000. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res., 28(22): E97.

[21]dela Cruz, T.E.E., Schulz, B.E., Kubicek, C.P., Druzhinina, I.S., 2006. Carbon source utilization by themarine Dendryphiella species D. arenaria and D. salina. FEMS Microbiol. Ecol., 58(3):343-353.

[22]Dogra, N., Breuil, C., 2004. Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of Ophiostoma piceae. FEMS Microbiol. Lett., 238(1):175-181.

[23]Donzelli, B.G., Harman, G.E., 2001. Interaction of ammonium, glucose, and chitin regulates the expression of cell wall-degrading enzymes in Trichoderma atroviride strain P1. Appl. Environ. Microbiol., 67(12):5643-5647.

[24]Dowzer, C.E.A., Kelly, J.M., 1991. Analysis of the creA gene, a regulator of carbon catabolite repression. Mol. Cell. Biol., 11(11):5701-5709.

[25]Druzhinina, I.S., Schmoll, M., Seiboth, B., Kubicek, C.P., 2006. Global carbon utilization profiles of wild-type strains, mutants and transformants of Hypocrea jecorina. Appl. Environ. Microbiol., 72(3):2126-2133.

[26]Druzhinina, I.S., Komon-Zelazowska, M., Kredics, L., Hatvani, L., Antal, Z., Belayneh, T., Kubicek, C.P., 2008. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology, 154(Pt 11):3447-3459.

[27]d′Enfert, C., Bonini, B.M., Zapella, P.D., Fontaine, T., da Silva, A.M., Terenzi, H.F., 1999. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol. Microbiol., 32(3):471-483.

[28]Farkaš, V., Labudová, I., Bauer, Š., Ferenczy, L., 1981. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiol., 26(2):129-132.

[29]Felenbok, B., Flipphi, M., Nikolaev, I., 2001. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog. Nucleic Acid Res. Mol. Biol., 69:149-204.

[30]Fodor, S.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P., Adams, C.L., 1993. Multiplexed biochemical assays with biological chips. Nature, 364(6437):555-556.

[31]Franzusoff, A., Cirillo, V.P., 1982. Uptake and phosphorylation of 2-deoxy-D-glucose by wild type and single-kinase strains of Saccharomyces cerevisiae. Biochim. Biophys. Acta, 688(2):295-304.

[32]Friedl, M.A., Kubicek, C.P., Druzhinina, I.S., 2008a. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol., 74(1): 245-250.

[33]Friedl, M.A., Schmoll, M., Kubicek, C.P., Druzhinina, I.S., 2008b. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidativestress. Microbiology, 154(Pt 4):1229-1241.

[34]Gardiner, D.M., Kazan, K., Manners, J.M., 2009. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol., 46(8):604-613.

[35]Gu, M.B., Mitchell, R.J., Kim, B.C., 2004. Whole-cell-based biosensors for environmental biomonitoring and application. Adv. Biochem. Eng. Biotechnol., 87:269-305.

[36]Guarro, J., Antolin-Ayala, M.I., Gene, J., Gutierrez-Calzada, J., Nieves-Diez, C., Ortoneda, M., 1999. Fatal case of Trichoderma harzianum infection in a renal transplant recipient. J. Clin. Microbiol., 37(11):3751-3755.

[37]Hamer, L., Adachi, K., Montenegro-Chamorro, M.V., Tanzer, M.M., Mahanty, S.K., Darveaux, B.A., Lampe, D.J., Slater, T.M., Ramamurthy, L., DeZwaan, T.M., et al., 2001. Gene discovery and gene function assignment in filamentous fungi. Proc. Natl. Acad. Sci. USA, 98(9): 5110-5115.

[38]Hennequin, C., Chouaki, T., Pichon, J.C., Strunski, V., Raccurt, C., 2000. Otitis externa due to Trichoderma longibrachiatum. Eur. J. Clin. Microbiol. Infect. Dis., 19(8): 641-642.

[39]Hoyos-Carvajal, L., Orduz, S., Bissett, J., 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet. Biol., 46(9):615-631.

[40]Hynes, M.J., 1975. Studies on the role of the areA gene in the regulation of nitrogen catabolism in Aspergillus nidulans. Aust. J. Biol. Sci., 28(3):301-313.

[41]Ilmén, M., Thrane, C., Penttilä, M., 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet., 251(4):451-460.

[42]Jekosch, K., Kück, U., 2000. Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr. Genet., 37(6):388-395.

[43]Kahmann, R., Basse, C., 2001. Fungal gene expression during pathogenesis-related development and host plant colonization. Curr. Opin. Microbiol., 4(4):374-380.

[44]Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W., 2001. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology, 11(2):11R-18R.

[45]Kim, D.J., Baek, J.M., Uribe, P., Kenerley, C.M., Cook, D.R., 2002. Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr. Genet., 40(6):374-384.

[46]Komon-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M., Kredics, L., Kubicek, C.P., Druzhinina, I.S., 2007. Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl. Environ. Microbiol., 73(22):7415-7426.

[47]Kowal, P., Wang, P.G., 2002. UDP-GlcNAc C4 epimerase involved in the biosynthesis of 2-acetamino-2-deoxy-L-altruronic acid in the O-antigen repeating units of Plesiomonas shigelloides O17. Biochemistry, 41(51): 15410-15414.

[48]Kraus, G., Druzhinina, I., Bissett, J., Prillinger, H.J., Szakacs, G., Koptchinski, A., Gams, W., Kubicek, C.P., 2004. Trichoderma brevicompactum sp. nov. Mycologia, 96(5): 1059-1073.

[49]Kubicek, C.P., 1987. Involvement of a conidial endoglucanase and a plasma-membrane bound β-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichoderma reesei. J. Gen. Microbiol., 133(6):1481-1487.

[50]Kubicek, C.P., Bissett, J., Kullnig-Gradinger, C.M., Druzhinina, I.S., Szakacs, G., 2003. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet. Biol., 38(3):310-317.

[51]Kudla, B., Caddick, M.X., Langdon, T., Martinez-Rossi, N.M., Bennett, C.F., Sibley, S., Davies, R.W., Arst, H.N.Jr., 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J., 9(5):1355-1364.

[52]Kutlesa, N.J., Caveney, S., 2001. Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Manage. Sci., 57(1):25-32.

[53]le Crom, S., Schackwitz, W., Pennacchio, L., Magnuson, J.K., Culley, D.E., Collett, J.R., Martin, J.R., Druzhinina, I.S., Mathis, H., Monot, F., et al., 2009. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. PNAS, 106(38):16151-16156.

[54]Mach, R.L., Peterbauer, C.K., Payer, K., Jaksits, S., Woo, S.L., Zeilinger, S., Kullnig, C.M., Lorito, M., Kubicek, C.P., 1999. Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl. Environ. Microbiol., 65(5):1858-1863.

[55]March, J.C., Rao, G., Bentley, W.E., 2003. Biotechnological applications of green fluorescent protein. Appl. Microbiol. Biotechnol., 62(4):303-315.

[56]Marzluf, G.A., 1997. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev., 61(1):17-32.

[57]Montenecourt, B.S., Eveleigh, D.E., 1979. Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei. In: Brown, R.D.Jr., Jurasek, L. (Eds.), Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis. Advances in Chemistry, Vol. 181. American Chemical Society, p.289-301.

[58]Nagy, V., Seidl, V., Szakacs, G., Komoń-Zelazowska, M., Kubicek, C.P., Druzhinina, I.S., 2007. Application of DNA bar codes for screening of industrially important fungi: the haplotype of Trichoderma harzianum sensu stricto indicates superior chitinase formation. Appl. Environ. Microbiol., 73(21):7048-7058.

[59]Nogawa, M., Goto, M., Okada, H., Morikawa, Y., 2001. L-sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr. Genet., 38(6): 329-334.

[60]OBrian, G.R., Fakhoury, A.M., Payne, G.A., 2003. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet. Biol., 39(2):118-127.

[61]O′Farrell, P.H., 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250(10):4007-4021.

[62]Pall, M.L., 1993. The use of ignite (Basta; glufosinate; phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genet. Newslett., 40:58.

[63]Piwnica-Worms, D., Schuster, D.P., Garbow, J.R., 2004. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol., 6(4):319-331.

[64]Platt, A., Langdon, T., Arst, H.N.Jr., Kirk, D., Tollervey, D., Mates Sanchez, J.M., Caddick, M.X., 1996. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3 untranslated region of its mRNA. EMBO J., 15(11):2791-2801.

[65]Ragnaud, J.M., Marceau, C., Roche-Bezian, M.C., Wone, C., 1984. Infection peritoneale a Trichoderma koningii sur dialyse peritoneale continue ambulatoire. Med. Maladies Infect., 14(7-8):402-405.

[66]Randez-Gil, F., Prieto, J.A., Sanz, P., 1995. The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast. Curr. Genet., 28(2):101-107.

[67]Ravagnani, A., Gorfinkiel, L., Langdon, T., Diallinas, G., Adjadj, E., Demais, S., Gorton, D., Arst, H.N.Jr., Scazzocchio, C., 1997. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J., 16(13):3974-3986.

[68]Rieger, K.J., Kaniak, A., Coppee, J.Y., Aljinovic, G., Baudin-Baillieu, A., Orlowska, G., Gromadka, R., Groudinsky, O., di Rago, J.P., Slonimski, P.P., 1997. Large-scale phenotypic analysis-the pilot project on yeast chromosome III. Yeast, 13(16):1547-1562.

[69]Rieger, K.J., El-Alama, M., Stein, G., Bradshaw, C., Slonimski, P.P., Maundrell, K., 1999. Chemotyping of yeast mutants using robotics. Yeast, 15(10B):973-986.

[70]Ross-Macdonald, P., Coelho, P.S.R., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K.H., Sheehan, A., Symoniatis, D., Umansky, L., et al., 1999. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 402(6760):413-418.

[71]Sampathkumar, P., Paya, C.V., 2001. Fusarium infection after solid-organ transplantation. Clin. Infect. Dis., 32(8):1237-1240.

[72]Schauer, R., 2000. Achievements and challenges of sialic acid research. Glycoconj. J., 17(7-9):485-499.

[73]Schmoll, M., Zeilinger, S., Mach, R.L., Kubicek, C.P., 2004. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet. Biol., 41(9):877-887.

[74]Schuster, A., Kubicek, C.P., Friedl, M.A., Druzhinina, I.S., Schmoll, M., 2007. Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics, 8(1):449.

[75]Seiboth, B., Hartl, L., Pail, M., Kubicek, C.P., 2003. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase. Eukaryot. Cell, 2(5):867-875.

[76]Seiboth, B., Gamauf, C., Pail, M., Hartl, L., Kubicek, C.P., 2007. The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol. Microbiol., 66(4):890-900.

[77]Seidl, V., Huemer, B., Seiboth, B., Kubicek, C.P., 2005. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J., 272(22):5923-5939.

[78]Seidl, V., Druzhinina, I.S., Kubicek, C.P., 2006. A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology, 152(Pt 7):2003-2012.

[79]Seidl, V., Gamauf, C., Druzhinina, I.S., Seiboth, B., Hartl, L., Kubicek, C.P., 2008. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 9(1):327.

[80]Sims, A.H., Gent, M.E., Robson, G.D., Dunn-Coleman, N.S., Oliver, S.G., 2004. Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycol. Res., 108(Pt 8):853-857.

[81]Singh, M.P., 2009. Application of Biolog FF MicroPlate for substrate utilization and metabolite profiling of closely related fungi. J. Microbiol. Methods, 77(1):102-108.

[82]Strauss, J., Mach, R.L., Zeilinger, S., Hartler, G., Stöffler, G., Wolschek, M., Kubicek, C.P., 1995. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett., 376(1-2):103-107.

[83]Sweigard, J.A., Carroll, A.M., Valent, B., 1999. Restriction Enzyme-mediated Integration in the Rice Blast Fungus. In: Septoria on Cereals: A Study in Pathosystems. IACR 15th International Symposium. Long Ashton Research Station, Bristol, p.192-198.

[84]Tanis, B.C., van der Pijl, H., van Ogtrop, M.L., Kibbelaar, R.E., Chang, P.C., 1995. Fatal fungal peritonitis by Trichoderma longibrachiatum complicating peritoneal dialysis. Nephrol. Dial. Transplant., 10(1):114-116.

[85]Tanzer, M.M., Arst, H.N., Skalchunes, A.R., Coffin, M., Darveaux, B.A., Heiniger, R.W., Shuster, J.R., 2003. Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct. Integr. Genomics, 3(4):160-170.

[86]Vitale, R.G., Afeltra, J., Dannaoui, E., 2005. Antifungal combinations. Methods Mol. Med., 118:143-152.

[87]Wilson, R.A., Arst, H.N.Jr., 1998. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the streetwise GATA family of transcription factors. Microbiol. Mol. Biol. Rev., 62(3):586-596.

[88]Yeo, S.F., Wong, B., 2002. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin. Microbiol. Rev., 15(3):465-484.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

fungus

2010-03-11 11:12:07

This review is very interesting. The tool "Phenotype MicroArrays" is a new and effective one.
Good!

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE