CLC number: S336
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2013-06-24
Cited: 2
Clicked: 6711
Xiu-ping Lu, Bing-guang Xiao, Yong-ping Li, Yi-jie Gui, Yu Wang, Long-jiang Fan. Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum)[J]. Journal of Zhejiang University Science B, 2013, 14(7): 570-577.
@article{title="Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum)",
author="Xiu-ping Lu, Bing-guang Xiao, Yong-ping Li, Yi-jie Gui, Yu Wang, Long-jiang Fan",
journal="Journal of Zhejiang University Science B",
volume="14",
number="7",
pages="570-577",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1200227"
}
%0 Journal Article
%T Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum)
%A Xiu-ping Lu
%A Bing-guang Xiao
%A Yong-ping Li
%A Yi-jie Gui
%A Yu Wang
%A Long-jiang Fan
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 7
%P 570-577
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1200227
TY - JOUR
T1 - Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum)
A1 - Xiu-ping Lu
A1 - Bing-guang Xiao
A1 - Yong-ping Li
A1 - Yi-jie Gui
A1 - Yu Wang
A1 - Long-jiang Fan
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 7
SP - 570
EP - 577
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1200227
Abstract: diversity arrays technology (DArT) is a microarray-based marker system that achieves high throughput by reducing the complexity of the genome. A DArT chip has recently been developed for tobacco. In this study, we genotyped 267 flue-cured cultivars/landraces, including 121 Chinese accessions over five decades from widespread geographic regions in China, 103 from the Americas, and 43 other foreign cultivars, using the newly developed chip. Three hundred and thirty polymorphic DArT makers were selected and used for a phylogenetic analysis, which suggested that the 267 accessions could be classified into two subgroups, which could each be further divided into 2‒4 sections. Eight elite cultivars, which account for 83% of the area of Chinese tobacco production, were all found in one subgroup. Two high-quality cultivars, HHDJY and Cuibi1, were grouped together in one section, while six other high-yield cultivars were grouped into another section. The 330 DArT marker clones were sequenced and close to 95% of them are within non-repetitive regions. Finally, the implications of this study for Chinese flue-cured tobacco breeding and production programs were discussed.
[1]Agarwal, M., Shrivastava, N., Padh, H., 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., 27(4):617-631.
[2]Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., et al., 2006. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet., 113(8):1409-1420.
[3]Alsop, B.P., Farre, A., Wenzl, P., Wang, J., Zhou, M., Romagosa, I., Kilian, A., Steffenson, B.J., 2011. Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol. Breed., 27(1):77-92.
[4]Botstein, D., White, R.L., Skolnick, M., Davis, R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32(3):314-331.
[5]Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18):3674-3676.
[6]Edwards, K.D., Bombarely, A., Story, G.W., Allen, F., Mueller, L.A., Coates, S.A., Jones, L., 2010. TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics, 11(1):142.
[7]Fricano, A., Bakaher, N., del Corvo, M., Piffanelli, P., Donini, P., Stella, A., Ivanov, N.V., Pozzi, C., 2012. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet., 13(1):18.
[8]Hubisz, M.J., Falush, D., Stephens, M., Pritchard, J.K., 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour., 9(5):1322-1332.
[9]Jaccoud, D., Peng, K., Feinstein, D., Kilian, A., 2001. Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res., 29(4):E25.
[10]Liu, G., 2011. Practical Guide to Leaf Tobacco Production Techniques in China. China National Leaf Tobacco Corporation, Beijing (in Chinese).
[11]Lu, X.P., Gui, Y.J., Xiao, B.G., Li, Y., Tong, Z.J., Liu, Y., Bai, X.F., Wu, W.R., Xia, L., Huttner, E., et al., 2013. Development of DArT markers for linkage map of flue-cured tobacco. Chin. Sci. Bull., 58(6):641-648.
[12]Moon, H.S., Nicholson, J.S., Heineman, A., Lion, K., Hoeven, R., Hayes, A.J., Lewis, R.S., 2009a. Changes in genetic diversity of US flue-cured tobacco germplasm over seven decades of cultivar development. Crop Sci., 49(2):498-508.
[13]Moon, H.S., Nifong, J.M., Nicholson, J.S., Heineman, A., Lion, K., Hoeven, R., Hayes, A.J., Lewis, R.S., 2009b. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.) genetic resources. Crop Sci., 49(6):2149-2159.
[14]Ren, N., Timko, M.P., 2001. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 44(4):559-571.
[15]Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Huang, P.T. et al., translator, 2002. Science Press, Beijing, p.547-610 (in Chinese).
[16]Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics, 105(2):437-460.
[17]Tinker, N.A., Kilian, A., Wight, C.P., Heller-Uszynska, K., Wenzl, P., Rines, H.W., Bjornstad, A., Howarth, C.J., Jannink, J.L., Anderson, J.M., et al., 2009. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics, 10(1):39.
[18]Watterson, G.A., 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol., 7(2):256-276.
[19]Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., Kilian, A., 2004. Diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS, 101(26):9915-9920.
[20]Yang, B.C., Xiao, B.G., Chen, X.J., Shi, C.H., 2007. Assessing the genetic diversity of tobacco germplasm using intersimple sequence repeat and inter-retrotransposon amplification polymorphism markers. Ann. Appl. Biol., 150(3):393-401.
[21]Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L., 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res., 34(Web Sever):W293-W297.
[22]Zhang, H.Y., Liu, X.Z., He, C.S., Yang, Y.M., 2006. Genetic diversity among flue-cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Bot. Stud., 47(3):223-229.
[23]Zhao, J.H., Zhang, J.S., Wang, Y., Wang, R.G., Wu, C., Fan, L.J., Ren, X.L., 2011. DNA methylation polymorphism in flue-cured tobacco and candidate markers for tobacco mosaic virus resistance. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(11):935-942.
Open peer comments: Debate/Discuss/Question/Opinion
<1>