References
[1] Bolten, C.J., Kiefer, P., Letisse, F., 2007. Sampling for metabolome analysis of microorganisms.
Anal Chem, 79(10):3843-3849.
[2] Canelas, A.B., Ras, C., ten Pierick, A., 2008. Leakage-free rapid quenching technique for yeast metabolomics.
Metabolomics, 4(3):226-239.
[3] Carvalho, A.S., Silva, J., Ho, P., 2004. Relevant factors for the preparation of freeze-dried lactic acid bacteria.
Int Dairy J, 14(10):835-847.
[4] Castrillo, J.I., Hayes, A., Mohmmed, S., 2003. An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry.
Phytochemistry, 62(6):929-937.
[5] Coulier, L., Bas, R., Jespersen, S., 2006. Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry.
Anal Biochem, 78(18):6573-6582.
[6] Daz, M., Herrero, M., Garca, L.A., 2010. Application of flow cytometry to industrial microbial bioprocesses.
Biochem Eng J, 48(3):385-407.
[7] Duetz, W.A., Witholt, B., 2004. Oxygen transfer by orbital shaking of square vessels and deep well microtiter plates of various dimensions.
Biochem Eng J, 17(3):181-185.
[8] Faijes, M., Mars, A.E., Smid, E.J., 2007. Comparison of quenching and extraction methodologies for metabolome analysis of
Lactobacillus plantarum
.
Microb Cell Fact, 6:27
[9] Fonseca, F., Marin, M., Morris, G.J., 2006. Stabilization of frozen
Lactobacillus delbrueckii subsp.
bulgaricus in glycerol suspensions: freezing kinetics and storage temperature effects.
Appl Environ Microbiol, 72(10):6474-6482.
[10] Garbayo, I., Vlchez, C., Vega, J.M., 2004. Influence of immobilization parameters on growth and lactic acid production by
Streptococcus thermophilus and
Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads.
Biotechnol Lett, 26(23):1825-1827.
[11] Huang, L., Lu, Z., Yuan, Y., 2006. Optimization of a protective medium for enhancing the viability of freeze-dried
Lactobacillus delbrueckii subsp.
bulgaricus based on response surface methodology.
J Ind Microbiol Biotechnol, 33(1):55-61.
[12] Jana, S., Lorenz, C.R., Patricia, W., 2009. A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast.
Anal Biochem, 394(2):192-201.
[13] Koek, M.M., Muilwijk, B., van der Werf, M.J., 2006. Microbial metabolomics with gas chromatography/mass spectrometry.
Anal Chem, 78(4):1272-1281.
[14] Kumar, S., Wittmann, C., Heinzle, E., 2004. Minibioreactors.
Biotechnol Lett, 26(1):1-10.
[15] Lange, H.C., Eman, M., van Zuijlen, G., 2001. Improved rapid sampling for
in vivo kinetics of intracellular metabolites in
Saccharomyces cerevisiae
.
Biotechnol Bioeng, 75(4):406-415.
[16] Li, C., Zhao, J.L., Wang, Y.T., 2009. Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of
Lactobacillus bulgaricus L2 at different growth conditions.
World J Microbiol Biotechnol, 25(9):1659-1665.
[17] Link, H., Anselment, B., Weuster-Botz, D., 2008. Leakage of adenylates during cold methanol/glycerol quenching of
Escherichia coli
.
Metabolomics, 4(3):240-247.
[18] Meyer, H., Liebeke, M., Lalk, M., 2010. A protocol for the investigation of the intracellular
Staphylococcus aureus metabolome.
Anal Biochem, 401(2):250-259.
[19] Nielsen, J., 1997. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates.
Biochem J, 321:133-138.
[20] Oldiges, M., Ltz, S., Pflug, S., 2007. Metabolomics: current state and evolving methodologies and tools.
Appl Microbiol Biotechnol, 76(3):495-511.
[21] Otto, R., Brink, B., Veldkamp, H., 1983. The relation between growth rate and electrochemical proton gradient of
Streptococcus cremoris
.
FEMS Microbiol Lett, 16(1):69-74.
[22] Russell, J.B., Diez-Gonzalez, F., 1998. The effects of fermentation acids on bacterial growth.
Adv Microb Physiol, 39:205-234.
[23] Schdel, F., David, F., Franco-Lara, E., 2011. Evaluation of cell damage caused by cold sampling and quenching for metabolome analysis.
Appl Microbiol Biotechnol, 92(6):1261-1274.
[24] Schaefer, U., Boos, W., Takors, R., 1999. Automated sampling device for monitoring intracellular metabolites dynamics.
Anal Biochem, 270(1):88-96.
[25] Schiraldi, C., Valli, C., Molinaro, A., 2006. Exopolysaccharides production in
Lactobacillus bulgaricus and
Lactobacillus casei exploiting microfiltration.
J Ind Microbiol Biotechnol, 33(5):384-390.
[26] Siegumfeldt, H., Rechinger, K.B., Jakobsen, M., 2000. Dynamic changes of intracellular pH in individual lactic acid bacteria cells in response to a rapid drop in extracellular pH.
Appl Environ Microbiol, 66(6):2330-2335.
[27] Spura, J., Reimer, L.C., Wieloch, P., 2009. A method for enzyme quenching in microbial metabolome analysis successfully applied to Gram-positive and Gram-negative bacteria and yeast.
Anal Biochem, 394(2):192-201.
[28] Tang, Y.J., Martin, H.G., Myers, S., 2009. Advances in analysis of microbial metabolic fluxes via
13C isotopic labeling.
Mass Spectrom Rev, 28(2):362-375.
[29] van Dam, J.C., Eman, M.R., Frank, J., 2002. Analysis of glycolytic intermediates in
Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionisation with tandem mass spectrometric detection.
Anal Chim Acta, 460(2):209-218.
[30] Villas-Bôas, S.G., Bruheim, P., 2007. Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells.
Anal Biochem, 370(1):87-97.
[31] Wittmann, C., Krmer, J.O., Kiefer, P., 2004. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria.
Anal Biochem, 327(1):135-139.
[32] Wu, H., Southam, A.D., Hines, A., 2008. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics.
Anal Biochem, 372(2):204-212.
Open peer comments: Debate/Discuss/Question/Opinion
<1>