Full Text:   <3085>

Summary:  <2104>

CLC number: R778.1+1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-02-15

Cited: 0

Clicked: 5133

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Han

http://orcid.org/0000-0003-1696-0615

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.3 P.225-235

http://doi.org/10.1631/jzus.B1500233


Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations


Author(s):  Fang-yu Lin, Zhu Huang, Ning Lu, Wei Chen, Hui Fang, Wei Han

Affiliation(s):  Department of Ophthalmology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   hanweidr@hotmail.com

Key Words:  Myopia, EGR1, LAMA2, Association study, Single nucleotide polymorphism


Fang-yu Lin, Zhu Huang, Ning Lu, Wei Chen, Hui Fang, Wei Han. Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations[J]. Journal of Zhejiang University Science B, 2016, 17(3): 225-235.

@article{title="Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations",
author="Fang-yu Lin, Zhu Huang, Ning Lu, Wei Chen, Hui Fang, Wei Han",
journal="Journal of Zhejiang University Science B",
volume="17",
number="3",
pages="225-235",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500233"
}

%0 Journal Article
%T Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations
%A Fang-yu Lin
%A Zhu Huang
%A Ning Lu
%A Wei Chen
%A Hui Fang
%A Wei Han
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 3
%P 225-235
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500233

TY - JOUR
T1 - Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations
A1 - Fang-yu Lin
A1 - Zhu Huang
A1 - Ning Lu
A1 - Wei Chen
A1 - Hui Fang
A1 - Wei Han
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 3
SP - 225
EP - 235
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500233


Abstract: 
Functional studies have suggested the important role of early growth response 1 (EGR1) and Laminin α2-chain (LAMA2) in human eye development. Genetic studies have reported a significant association of the single nucleotide polymorphism (SNP) in the LAMA2 gene with myopia. This study aimed to evaluate the association of the tagging SNPs (tSNPs) in the EGR1 and LAMA2 genes with high myopia in two independent Han Chinese populations. Four tSNPs (rs11743810 in the EGR1 gene; rs2571575, rs9321170, and rs1889891 in the LAMA2 gene) were selected, according to the HapMap database (http://hapmap.ncbi.nlm.nih.gov), and were genotyped using the ligase detection reaction (LDR) approach for 167 Han Chinese nuclear families with extremely highly myopic offspring (<−10.0 diopters) and an independent group with 485 extremely highly myopic cases (<−10.0 diopters) and 499 controls. Direct sequencing was used to confirm the LDR results in twenty randomly selected subjects. Family-based association analysis was performed using the family-based association test (FBAT) software package (Version 1.5.5). Population-based association analysis was performed using the Chi-square test. The association analysis power was estimated using online software (http://design.cs.ucla.edu). The FBAT demonstrated that all four tSNPs tested did not show association with high myopia (P>0.05). Haplotype analysis of tSNPs in the LAMA2 genes also did not show a significant association (P>0.05). Meanwhile, population-based association analysis also showed no significant association results with high myopia (P>0.05). On the basis of our family- and population-based analyses for the Han Chinese population, we did not find positive association signals of the four SNPs in the LAMA2 and EGR1 genes with high myopia.

中国汉族人群病理性高度近视与EGR1和LAMA2基因多态位点的关联分析

目的:检测分析EGR1LAMA2基因序列中单核苷酸多态性位点(SNP)在中国汉族人病理性高度近视的遗传机制中的作用。
创新点:检测了EGR1基因外显子序列中的SNP,验证了其与高度近视发病无关联;检测了LAMA2基因中热点区域中的三个SNP,发现在我国汉族人群中,这几个SNP与高度近视发病的遗传机制无关,与先前国外报道结果不同。
方法:收集167个高度近视核心家系以及485例散发高度近视患者和499例正视眼对照者。根据HapMap单倍型数据库以及先前的研究结果选择标签SNP(图1和2),测定所收集患者的相应基因型,采用Haploview和卡方分析软件作关联分析,并以关联分析效能软件计算本研究的计算效能(表3和4)。
结论:本研究在汉族人高度近视人群中未检测到阳性关联信号,需要进一步的研究深入验证。

关键词:高度近视;EGR1基因;LAMA2基因;关联分析;单核苷酸多态性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aldahmesh, M.A., Khan, A.O., Alkuraya, H., et al., 2013. Mutations in LRPAP1 are associated with severe myopia in humans. Am. J. Hum. Genet., 93(2):313-320.

[2]Ashby, R.S., Zeng, G., Leotta, A.J., et al., 2014. Egr1 mRNA expression is a marker for the direction of mammalian ocular growth. Invest. Ophthalmol. Vis. Sci., 55(9):5911-5921.

[3]Bhattacharyya, S., Fang, F., Tourtellotte, W., et al., 2013. EGR1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J. Pathol., 229(2):286-297.

[4]Cheng, C.Y., Schache, M., Ikram, M.K., et al., 2013. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am. J. Hum. Genet., 93(2):264-277.

[5]Cordell, H.J., Barratt, B.J., Clayton, D.G., 2004. Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet. Epidemiol., 26(3):167-185.

[6]Curtin, B.J., 1985. The Myopias: Basic Science and Clinical Management. Harper & Row, Philadelphia, p.102-105.

[7]de Bakker, P.I., Yelensky, R., Pe'er, I., et al., 2005. Efficiency and power in genetic association studies. Nat. Genet., 37(11):1217-1223.

[8]Farbrother, J.E., Kirov, G., Owen, M.J., et al., 2004. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Invest. Ophthalmol. Vis. Sci., 45(9):2873-2878.

[9]Fischer, A.J., McGuire, J.J., Schaeffel, F., et al., 1999. Light- and focus-dependent expression of the transcription factor ZENK in the chick retina. Nat. Neurosci., 2(8):706-712.

[10]Goss, D.A., van Veen, H.G., Rainey, B.B., et al., 1997. Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students. Optom. Vis. Sci., 74(7):489-495.

[11]Guggenheim, J.A., Zhou, X., Evans, D.M., et al., 2013. Coordinated genetic scaling of the human eye: shared determination of axial eye length and corneal curvature. Invest. Ophthalmol. Vis. Sci., 54(3):1715-1721.

[12]Guo, H., Tong, P., Liu, Y., et al., 2015. Mutations of P2 encoding prolyl 4-hydroxylase 2 are associated with nonsyndromic high myopia. Genet. Med., 17(4):300-306.

[13]Han, W., Leung, K.H., Fung, W.Y., et al., 2009. Association of PAX6 polymorphisms with high myopia in Han Chinese nuclear families. Invest. Ophthalmol. Vis. Sci., 50(1):47-56.

[14]Harper, A.R., Summers, J.A., 2015. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp. Eye Res., 133(4):100-111.

[15]Hawthorne, F.A., Young, T.L., 2013. Genetic contributions to myopic refractive error: insights from human studies and supporting evidence from animal models. Exp. Eye Res., 114(9):141-149.

[16]Hysi, P.G., Wojciechowski, R., Rahi, J.S., et al., 2014. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Invest. Ophthalmol. Vis. Sci., 55(5):3344-3351.

[17]Iribarren, R., Balsa, A., Armesto, A., et al., 2005. Family history of myopia is not related to the final amount of refractive error in low and moderate myopia. Clin. Exp. Ophthalmol., 33(3):274-278.

[18]Jonas, J.B., Xu, L., 2014. Histological changes of high axial myopia. Eye (Lond.), 28(2):113-117.

[19]Kiefer, A.K., Tung, J.Y., Do, C.B., et al., 2013. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet., 9(2):e1003299.

[20]Li, J., Jiang, D., Xiao, X., 2015. Evaluation of 12 myopia-associated genes in Chinese patients with high myopia. Invest. Ophthalmol. Vis. Sci., 56(2):722-729.

[21]Li, T., Xiao, X., Li, S., et al., 2008. Evaluation of EGR1 as a candidate gene for high myopia. Mol. Vis., 14(7):1309-1312.

[22]Miyake, M., Yamashiro, K., Tabara, Y., et al., 2015. Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun., 31(6):6689.

[23]Morgan, I.G., Ohno-Matsui, K., Saw, S.M., 2012. Myopia. Lancet, 379(9827):1739-1748.

[24]Pan, C.W., Ramamurthy, D., Saw, S.M., 2012. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt., 32(1):3-16.

[25]Schéele, S., Nyström, A., Durbeej, M., et al., 2007. Laminin isoforms in development and disease. J. Mol. Med. (Berl)., 85(8):825-836.

[26]Schippert, R., Burkhardt, E., Feldkaemper, M., et al., 2007. Relative axial myopia in Egr1 (ZENK) knockout mice. Invest. Ophthalmol. Vis. Sci., 48(1):11-17.

[27]Tang, W.C., Yap, M.K., Yip, S.P., 2008. A review of current approaches to identifying human genes involved in myopia. Clin. Exp. Optom., 91(1):4-22.

[28]Verhoeven, V.J., Hysi, P.G., Wojciechowski, R., et al., 2013. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat. Genet., 45(3):314-318.

[29]Wojciechowski, R., 2011. Nature and nurture: the complex genetics of myopia and refractive error. Clin. Genet., 79(4):301-320.

[30]Wu, L.J., You, Q.S., Duan, J.L., et al., 2015. Prevalence and associated factors of myopia in high-school students in Beijing. PLoS ONE, 10(3):e0120764.

[31]Yang, J., Benyamin, B., McEvoy, B.P., et al., 2010. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet., 42(7):565-569.

[32]Yoshikawa, M., Yamashiro, K., Miyake, M., 2014. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort. Invest. Ophthalmol. Vis. Sci., 55(11):7343-7354.

[33]Appendix

[34]Our study has invited some controversy as follows:

[35]The authors have picked four tag SNPs from a gene that in the original studies (Verhoeven et al., 2013; Kiefer et al., 2013) were not associated with refraction or myopia, despite employing sample sizes more than 100 times larger than that in the current study; essentially they were doing the same thing, with lesser tools, but hoping for better results (extracted from reviewer’s comments).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE