Full Text:   <2849>

Summary:  <1927>

CLC number: S855.3

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-06-08

Cited: 0

Clicked: 5148

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.7 P.570-580

http://doi.org/10.1631/jzus.B1700283


Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation


Author(s):  Ying Shan, Zi-Qi Liu, Guo-Wei Li, Cong Chen, Hao Luo, Ya-Jie Liu, Xun-Hui Zhuo, Xing-Fen Shi, Wei-Huan Fang, Xiao-Liang Li

Affiliation(s):  Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   xlli@zju.edu.cn

Key Words:  Porcine epidemic diarrhea virus, Nucleocapsid protein, Interferon-λ, (IFN-λ, ), Nuclear factor-κ, B (NF-κ, B), Intestinal epithelial cells


Share this article to: More <<< Previous Article|

Ying Shan, Zi-Qi Liu, Guo-Wei Li, Cong Chen, Hao Luo, Ya-Jie Liu, Xun-Hui Zhuo, Xing-Fen Shi, Wei-Huan Fang, Xiao-Liang Li. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation[J]. Journal of Zhejiang University Science B, 2018, 19(7): 570-580.

@article{title="Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation",
author="Ying Shan, Zi-Qi Liu, Guo-Wei Li, Cong Chen, Hao Luo, Ya-Jie Liu, Xun-Hui Zhuo, Xing-Fen Shi, Wei-Huan Fang, Xiao-Liang Li",
journal="Journal of Zhejiang University Science B",
volume="19",
number="7",
pages="570-580",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700283"
}

%0 Journal Article
%T Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation
%A Ying Shan
%A Zi-Qi Liu
%A Guo-Wei Li
%A Cong Chen
%A Hao Luo
%A Ya-Jie Liu
%A Xun-Hui Zhuo
%A Xing-Fen Shi
%A Wei-Huan Fang
%A Xiao-Liang Li
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 7
%P 570-580
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700283

TY - JOUR
T1 - Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation
A1 - Ying Shan
A1 - Zi-Qi Liu
A1 - Guo-Wei Li
A1 - Cong Chen
A1 - Hao Luo
A1 - Ya-Jie Liu
A1 - Xun-Hui Zhuo
A1 - Xing-Fen Shi
A1 - Wei-Huan Fang
A1 - Xiao-Liang Li
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 7
SP - 570
EP - 580
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700283


Abstract: 
porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κ;b (NF-κ;B) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.

猪流性腹泻病毒流行毒株核衣壳蛋白能够通过阻断核因子κB入核拮抗λ干扰素产生

目的:探索猪流性腹泻病毒(PEDV)核衣壳蛋白(N蛋白)对III型λ干扰素(IFN-λ)的影响.
创新点:首次在IPEC-J2细胞模型中证明PEDV流行病毒株的N蛋白可拮抗由聚肌胞苷酸(poly(I:C))诱导表达的III型IFN,但不能拮抗I型或II型IFN.这种拮抗作用是通过阻断核因子κB(NF-κB)入核来实现的.
方法:利用poly(I:C)刺激IPEC-J2细胞使其IFN诱导表达.实验组转染N蛋白真核表达载体,对照组转染空载体;利用定量聚合酶链反应(qPCR)、荧光素酶报告基因等技术,检测N蛋白对I型、II型及III型IFN表达抑制情况.利用间接免疫荧光技术,检测NF-κB在细胞内的分布情况,分析NF-κB入核与N蛋白抑制IFN-λ表达的关系.
结论:2013年至2017年间从浙江省不同的农场分离的10个PEDV毒株的N蛋白具有较高的核苷酸同源性,而疫苗毒株CV777的N蛋白在系统发育树中形成单系分支(图1).流行病毒株的N蛋白可以在IPEC-J2细胞中成功表达(图2和3),并拮抗由poly(I:C)诱导表达的III型IFN,但不能拮抗I型或II型IFN(图4和5).PEDV N蛋白通过阻断NF-κB入核来对poly(I:C)诱导的IFN-λ3产生的抑制作用(图6).

关键词:猪流行性腹泻;核衣壳蛋白;λ干扰素;核因子κB;肠上皮细胞

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Ank N, West H, Bartholdy C, et al., 2006. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. J Virol, 80(9):4501-4509.

[2]Cao L, Ge X, Gao Y, et al., 2015. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-β production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway. Virol J, 12(1):127.

[3]Cao L, Ge X, Gao Y, et al., 2015. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells. J Gen Virol, 96(7):1757-1767.

[4]Charley B, Laude H, 1988. Induction of α interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J Virol, 62(1):8-11.

[5]Ding Q, Huang B, Lu J, et al., 2012. Hepatitis c virus NS3/4A protease blocks IL-28 production. Eur J Immunol, 42(9):2374-2382.

[6]Ding Z, Fang L, Jing H, et al., 2014. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes β interferon production by sequestering the interaction between IRF3 and TBK1. J Virol, 88(16):8936.

[7]Guo C, Liu Y, Huang Y, 2016. Inhibitory mechanism of host antiviral innate immunity by porcine epidemic diarrhea virus. Chin J Biochem Mol Biol, 32(9):967-975 (in Chinese).

[8]Iversen MB, Ank N, Melchjorsen J, et al., 2010. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-κB than type I IFNs. J Virol, 84(9):4579-4586.

[9]Jung K, Saif LJ, 2015. Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Veterinary J, 204(2):134-143.

[10]Laude H, Masters PS, 1995. The coronavirus nucleocapsid protein. In: Siddell SG (Ed.), The Coronaviridae. The Viruses. Springer, Boston, p.141-163.

[11]Lazear HM, Nice TJ, Diamond MS, 2015. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity, 43(1):15-28.

[12]Lee C, 2015. Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J, 12(1):193.

[13]Li J, Liu Y, Zhang X, 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MAD5. J Virol, 84(13):6472-6482.

[14]Li L, Fu F, Xue M, et al., 2017. IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-α. Antiviral Res, 140:76-82.

[15]Lu X, Pan JA, Tao J, et al., 2011. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 42(1):37-45.

[16]Odendall C, Dixit E, Stavru F, et al., 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol, 15(8):717-726.

[17]Odendall C, Kagan JC, 2015. The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol, 12:47-52.

[18]Osterlund P, Veckman V, Sirén J, et al., 2005. Gene expression and antiviral activity of α/β interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol, 79(15):9608-9617.

[19]Roth-Cross JK, Bender SJ, Weiss SR, 2008. Murine coronavirus mouse hepatitis virus is recognized by MAD5 and induces type I interferon in brain macrophages/microglia. J Virol, 82(20):9829-9838.

[20]Saif LJ, 1993. Coronavirus immunogens. Vet Microbial, 37(3-4):285-297.

[21]Sang Y, Rowland RR, Blecha F, 2010. Molecular characterization and antiviral analyses of porcine type III interferons. J Interf Cytok Res, 30(11):801-807.

[22]Schelle B, Karl N, Ludewig B, et al., 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol, 79(11):6620-6630.

[23]Seth RB, Sun L, Ea CK, et al., 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell, 122(5):669-682.

[24]Shen H, Zhang C, Guo P, et al., 2016. Short communication: antiviral activity of porcine IFN-λ3 against porcine epidemic diarrhea virus in vitro. Virus Genes, 52(6):877-882.

[25]Sommereyns C, Paul S, Staeheli P, et al., 2008. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog, 4(3):e1000017.

[26]Song D, Park B, 2012. Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes, 44(2):167-175.

[27]Spiegel M, Pichlmair A, Mühlberger E, et al., 2004. The antiviral effect of interferon-β against SARS-coronavirus is not mediated by MXA protein. J Clin Virol, 30(3):211-213.

[28]Stetson DB, Medzhitov R, 2006. Type I interferons in host defense. Immunity, 25(3):373-381.

[29]Thomson SJ, Goh FG, Banks H, et al., 2009. The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc Natl Acad Sci USA, 106(28):11564-11569.

[30]Wack A, Terczyńska-Dyla E, Hartmann R, 2015. Guarding the frontiers: the biology of type III interferons. Nat Immunol, 16(8):802-809.

[31]Wen G, Zhang Y, Zhang X, et al., 2013. Functional characterization of porcine LSm14a in IFN-β induction. Vet Immunol Immunop, 155(1-2):110-116.

[32]Ye Y, Hauns K, Langland JO, et al., 2007. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virology, 81(6):2554-2563.

[33]Zhang Q, Shi K, Yoo D, 2016. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 489:252-268.

[34]Zhou Y, Gu Y, Qi B, et al., 2017. Porcine circovirus type 2 capsid protein induces unfolded protein response with subsequent activation of apoptosis. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(4):316-323.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE