CLC number: Q189
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-05-27
Cited: 0
Clicked: 6189
Gao-Hang Wang, Li-Ming Wang. Recent advances in the neural regulation of feeding behavior in adult Drosophila[J]. Journal of Zhejiang University Science B, 2019, 20(7): 541-549.
@article{title="Recent advances in the neural regulation of feeding behavior in adult Drosophila",
author="Gao-Hang Wang, Li-Ming Wang",
journal="Journal of Zhejiang University Science B",
volume="20",
number="7",
pages="541-549",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900080"
}
%0 Journal Article
%T Recent advances in the neural regulation of feeding behavior in adult Drosophila
%A Gao-Hang Wang
%A Li-Ming Wang
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 7
%P 541-549
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900080
TY - JOUR
T1 - Recent advances in the neural regulation of feeding behavior in adult Drosophila
A1 - Gao-Hang Wang
A1 - Li-Ming Wang
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 7
SP - 541
EP - 549
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900080
Abstract: The ability to maintain metabolic homeostasis is a key capability critical for the survival and well-being of animals living in constantly changing environments. Metabolic homeostasis depends on neuromodulators, such as biogenic amines, neuropeptides, and hormones, to signal changes in animals’ internal metabolic status and to orchestrate their behaviors accordingly. An important example is the regulation of feeding behavior by conserved molecular and cellular mechanisms across the animal kingdom. Its relatively simple brain coupled with well-characterized genetics and behavioral paradigms makes the fruit fly Drosophila melanogaster an excellent model for investigating the neuromodulatory regulation of feeding behavior. In this review we discuss the neuromodulators and neural circuits that integrate the internal physiological status with external sensory cues and modulate feeding behavior in adult fruit flies. Studies show that various specific aspects of feeding behavior are subjected to unique neuromodulatory regulation, which permits fruit flies to maintain metabolic homeostasis effectively.
[1]Ahn JE, Chen Y, Amrein H, 2017. Molecular basis of fatty acid taste in Drosophila. eLife, 6:e30115.
[2]Al-Anzi B, Armand E, Nagamei P, et al., 2010. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol, 20(11):969-978.
[3]Bharucha KN, Tarr P, Zipursky SL, 2008. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol, 211:3103-3110.
[4]Bjordal M, Arquier N, Kniazeff J, et al., 2014. Sensing of amino acids in a dopaminergic circuitry promotes rejection of an incomplete diet in Drosophila. Cell, 156(3):510-521.
[5]Carvalho GB, Kapahi P, Anderson DJ, et al., 2006. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol, 16(7):692-696.
[6]Chen YCD, Dahanukar A, 2017. Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep, 21(10):2978-2991.
[7]Dahanukar A, Foster K, van der Goes van Naters WM, et al., 2001. A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci, 4(12):1182-1186.
[8]Dahanukar A, Lei YT, Kwon JY, et al., 2007. Two Gr genes underlie sugar reception in Drosophila. Neuron, 56(3):503-516.
[9]Dethier VG, 1976. The Hungry Fly. Harvard University Press, Cambridge, p.4-118.
[10]Dus M, Min S, Keene AC, et al., 2011. Taste-independent detection of the caloric content of sugar in Drosophila. Proc Natl Acad Sci USA, 108(28):11644-11649.
[11]Dus M, Ai MR, Suh GSB, 2013. Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nat Neurosci, 16(5):526-528.
[12]Dus M, Lai JSY, Gunapala KM, et al., 2015. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1):139-151.
[13]Edgecomb RS, Harth CE, Schneiderman AM, 1994. Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol, 197:215-235.
[14]Freeman EG, Dahanukar A, 2015. Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol, 34:140-148.
[15]Fujii S, Yavuz A, Slone J, et al., 2015. Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr Biol, 25(5):621-627.
[16]Ganguly A, Pang LS, Duong VK, et al., 2017. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep, 18(3):737-750.
[17]Géminard C, Rulifson EJ, Léopold P, 2009. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab, 10(3):199-207.
[18]Grönke S, Müller G, Hirsch J, et al., 2007. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol, 5(6):e137.
[19]Hergarden AC, Tayler TD, Anderson DJ, 2012. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc Natl Acad Sci USA, 109(10):3967-3972.
[20]Inagaki HK, De-Leon SBT, Wong AM, et al., 2012. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell, 148(3):583-595.
[21]Inagaki HK, Panse KM, Anderson DJ, 2014. Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron, 84(4):806-820.
[22]Isabel G, Martin JR, Chidami S, et al., 2005. AKH-producing neuroendocrine cell ablation decreases trehalose and induces behavioral changes in Drosophila. Am J Physiol Regul Integr Comp Physiol, 288(2):R531-R538.
[23]Jiao YC, Moon SJ, Montell C, 2007. A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc Natl Acad Sci USA, 104(35):14110-14115.
[24]Jiao YC, Moon SJ, Wang XY, et al., 2008. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr Biol, 18(22):1797-1801.
[25]Joseph RM, Carlson JR, 2015. Drosophila chemoreceptors: a molecular interface between the chemical world and the brain. Trends Genet, 31(12):683-695.
[26]Joseph RM, Sun JS, Tam E, et al., 2017. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife, 6:e24992.
[27]Kim SK, Rulifson EJ, 2004. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 431(7006):316-320.
[28]Kim SM, Su CY, Wang JW, 2017. Neuromodulation of innate behaviors in Drosophila. Annu Rev Neurosci, 40:327-348.
[29]Ko KI, Root CM, Lindsay SA, et al., 2015. Starvation promotes concerted modulation of appetitive olfactory behavior via parallel neuromodulatory circuits. eLife, 4:e08298.
[30]Koç H, Vinyard CJ, Essick GK, et al., 2013. Food oral processing: conversion of food structure to textural perception. Annu Rev Food Sci Technol, 4:237-266.
[31]LeDue EE, Chen YC, Jung AY, et al., 2015. Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat Commun, 6:6667.
[32]LeDue EE, Mann K, Koch E, et al., 2016. Starvation-induced depotentiation of bitter taste in Drosophila. Curr Biol, 26(21):2854-2861.
[33]Lee G, Park JH, 2004. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1):311-323.
[34]Lee Y, Moon SJ, Montell C, 2009. Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci USA, 106(11):4495-4500.
[35]Lee Y, Kim SH, Montell C, 2010. Avoiding DEET through insect gustatory receptors. Neuron, 67(4):555-561.
[36]Lee Y, Kang MJ, Shim J, et al., 2012. Gustatory receptors required for avoiding the insecticide
[37]Liu QL, Tabuchi M, Liu S, et al., 2017. Branch-specific plasticity of a bifunctional dopamine circuit encodes protein hunger. Science, 356(6337):534-539.
[38]Marella S, Mann K, Scott K, 2012. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron, 73(5):941-950.
[39]Miyamoto T, Slone J, Song XY, et al., 2012. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell, 151(5):1113-1125.
[40]Moon SJ, Lee Y, Jiao YC, et al., 2009. A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol, 19(19):1623-1627.
[41]Murata S, Brockmann A, Tanimura T, 2017. Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila. J Exp Biol, 220:3231-3237.
[42]Olds WH, Xu T, 2014. Regulation of food intake by mechanosensory ion channels in enteric neurons. eLife, 3:e04402.
[43]Park JY, Dus M, Kim S, et al., 2016. Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Curr Biol, 26(15):1965-1974.
[44]Piper MDW, Blanc E, Leitão-Goncalves R, et al., 2014. A holidic medium for Drosophila melanogaster. Nat Methods, 11(1):100-105.
[45]Pool AH, Scott K, 2014. Feeding regulation in Drosophila. Curr Opin Neurobiol, 29:57-63.
[46]Pool AH, Kvello P, Mann K, et al., 2014. Four gabaergic interneurons impose feeding restraint in Drosophila. Neuron, 83(1):164-177.
[47]Rajan A, Perrimon N, 2012. Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 151(1):123-137.
[48]Ribeiro C, Dickson BJ, 2010. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr Biol, 20(11):1000-1005.
[49]Root CM, Ko KI, Jafari A, et al., 2011. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1):133-144.
[50]Sánchez-Alcañiz JA, Zappia G, Marion-Poll F, et al., 2017. A mechanosensory receptor required for food texture detection in Drosophila. Nat Commun, 8:14192.
[51]Scott K, 2018. Gustatory processing in Drosophila melanogaster. Annu Rev Entomol, 63:15-30.
[52]Slone J, Daniels J, Amrein H, 2007. Sugar receptors in Drosophila. Curr Biol, 17(20):1809-1816.
[53]Steck K, Walker SJ, Itskov PM, et al., 2018. Internal amino acid state modulates yeast taste neurons to support protein homeostasis in Drosophila. eLife, 7:e31625.
[54]Stocker RF, 1994. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res, 275(1):3-26.
[55]Sun JH, Liu C, Bai XB, et al., 2017. Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nat Commun, 8:14161.
[56]Thorne N, Chromey C, Bray S, et al., 2004. Taste perception and coding in Drosophila. Curr Biol, 14(12):1065-1079.
[57]Tian YJ, Wang LM, 2018. Octopamine mediates protein-seeking behavior in mated female Drosophila. Cell Discov, 4:66.
[58]Ueno K, Ohta M, Morita H, et al., 2001. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol, 11(18):1451-1455.
[59]Vargas MA, Luo NG, Yamaguchi A, et al., 2010. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr Biol, 20(11):1006-1011.
[60]Walker SJ, Corrales-Carvajal VM, Ribeiro C, 2015. Postmating circuitry modulates salt taste processing to increase reproductive output in Drosophila. Curr Biol, 25(20):2621-2630.
[61]Weiss LA, Dahanukar A, Kwon JY, et al., 2011. The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69(2):258-272.
[62]Yang Z, Yu Y, Zhang V, et al., 2015. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci USA, 112(16):5219-5224.
[63]Yang Z, Huang R, Fu X, et al., 2018. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res, 28(10):1013-1025.
[64]Yapici N, Cohn R, Schusterreiter C, et al., 2016. A taste circuit that regulates ingestion by integrating food and hunger signals. Cell, 165(3):715-729.
[65]Yu Y, Huang R, Ye J, et al., 2016. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife, 5:e15693.
[66]Zhan YP, Liu L, Zhu Y, 2016. Taotie neurons regulate appetite in Drosophila. Nat Commun, 7:13633.
[67]Zhang YV, Aikin TJ, Li ZZ, et al., 2016. The basis of food texture sensation in Drosophila. Neuron, 91(4):863-877.
Open peer comments: Debate/Discuss/Question/Opinion
<1>