Full Text:   <701>

Summary:  <334>

CLC number: 

On-line Access: 2025-12-31

Received: 2025-05-14

Revision Accepted: 2025-09-21

Crosschecked: 2025-12-31

Cited: 0

Clicked: 782

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei HU

https://orcid.org/0009-0007-2485-2303

Fan YANG

https://orcid.org/0000-0002-1308-4827

Feiya ZHAO

https://orcid.org/0000-0001-7159-1934

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.12 P.1172-1191

http://doi.org/10.1631/jzus.B2500254


Single-cell RNA-sequencing-guided reactive oxygen species-scavenging hydrogel design for regeneration of osteoporotic bone


Author(s):  Wei HU, Tianyi FEI, Zhichao LIU, Yude DING, Mengfei YU, Fan YANG, Feiya ZHAO

Affiliation(s):  Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou 310014, China; more

Corresponding email(s):   zhaofeiya@hmc.edu.cn, yangfan@hmc.edu.cn

Key Words:  Osteoporosis, Single-cell RNA-sequencing (scRNA-seq), Reactive oxygen species (ROS), Curcumin (CCM), Bone regeneration


Wei HU, Tianyi FEI, Zhichao LIU, Yude DING, Mengfei YU, Fan YANG, Feiya ZHAO. Single-cell RNA-sequencing-guided reactive oxygen species-scavenging hydrogel design for regeneration of osteoporotic bone[J]. Journal of Zhejiang University Science B, 2025, 26(12): 1172-1191.

@article{title="Single-cell RNA-sequencing-guided reactive oxygen species-scavenging hydrogel design for regeneration of osteoporotic bone",
author="Wei HU, Tianyi FEI, Zhichao LIU, Yude DING, Mengfei YU, Fan YANG, Feiya ZHAO",
journal="Journal of Zhejiang University Science B",
volume="26",
number="12",
pages="1172-1191",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2500254"
}

%0 Journal Article
%T Single-cell RNA-sequencing-guided reactive oxygen species-scavenging hydrogel design for regeneration of osteoporotic bone
%A Wei HU
%A Tianyi FEI
%A Zhichao LIU
%A Yude DING
%A Mengfei YU
%A Fan YANG
%A Feiya ZHAO
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 12
%P 1172-1191
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2500254

TY - JOUR
T1 - Single-cell RNA-sequencing-guided reactive oxygen species-scavenging hydrogel design for regeneration of osteoporotic bone
A1 - Wei HU
A1 - Tianyi FEI
A1 - Zhichao LIU
A1 - Yude DING
A1 - Mengfei YU
A1 - Fan YANG
A1 - Feiya ZHAO
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 12
SP - 1172
EP - 1191
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2500254


Abstract: 
The pathological microenvironment of osteoporosis poses a substantial clinical challenge for bone defect regeneration. Through single-cell RNA-sequencing (scRNA-seq) analysis, we identified a reactive oxygen species (ROS)-overloading osteoblast subpopulation as a critical pathological feature of osteoporotic niches. Guided by scRNA-seq analysis, we engineered a microenvironment-adaptive hydrogel system through precise integration of antioxidant curcumin-encapsulated zeolitic imidazolate framework-8 nanoparticles (CCM@ZIF-8 NPs) within photo-crosslinkable alginate methacrylate (AlgMA) hydrogel (AlgMA/CCM@ZIF-8). This engineered design exhibited dual functions: effectively scavenging ROS in bone marrow-derived mesenchymal stem cells (BMSCs) while simultaneously suppressing osteoclast differentiation. The osteo-regenerative superiority of the AlgMA/CCM@ZIF-8 nanocomposite hydrogel was conclusively demonstrated in bone defect models of osteoporotic mice. This scRNA-seq-informed engineering strategy offers a promising approach for developing pathophysiology-adapted biomaterials to promote regenerative repair in osteoporotic bone defects.

基于单细胞转录组测序分析:设计活性氧清除水凝胶及其在骨质疏松性骨再生中的应用

胡伟1, 费天一2, 刘志超2, 丁榆德1, 俞梦飞2, 杨帆1, 赵飞亚1
1浙江省人民医院牙科, 中国杭州市, 310014
2骨质疏松症的特殊病理微环境为骨缺损再生带来了巨大的临床挑战。通过单细胞转录组测序技术,本研究发现活性氧(ROS)过载的成骨细胞亚群是骨质疏松微环境的关键病理特征。在此基础上,本研究将姜黄素包裹的沸石咪唑酯框架-8(CCM@ZIF-8)纳米颗粒与光交联甲基丙烯酰化海藻酸盐(AlgMA)水凝胶相结合,构建了一种微环境自适应水凝胶系统(AlgMA/CCM@ZIF-8)。该系统展现出有效清除骨髓间充质干细胞中过载的ROS和抑制破骨细胞分化的双重功能,并在骨质疏松小鼠骨缺损模型中展现出显著的骨再生修复优势。这一基于单细胞测序分析的功能化设计策略,为开发适应病理生理特征的生物材料、推动骨质疏松性骨缺损再生修复,提供了具有前景的新方法。

关键词:骨质疏松;单细胞转录组测序(scRNA-seq);活性氧(ROS);姜黄素(CCM);骨再生

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlmeidaM, AmbroginiE, HanL, et al., 2009. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-γ expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem, 284(40):27438-27448.

[2]AmaroliA, PanfoliI, BozzoM, et al., 2024. The bright side of curcumin: a narrative review of its therapeutic potential in cancer management. Cancers (Basel), 16(14):2580.

[3]Au-DuongAN, LeeCK, 2017. Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Mater Sci Eng C, 76:477-482.

[4]AycanD, Gülİ, YorulmazV, et al., 2024. Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. Int J Biol Macromol, 255:128022.

[5]BarbourKE, LuiLY, EnsrudKE, et al., 2014. Inflammatory markers and risk of hip fracture in older white women: the study of osteoporotic fractures. J Bone Miner Res, 29(9):2057-2064.

[6]BeckerS, SwobodaA, SiemerH, et al., 2024. Membrane potential dynamics of C5a-stimulated neutrophil granulocytes. Pflugers Arch, 476(6):1007-1018.

[7]BoyleWJ, SimonetWS, LaceyDL, 2003. Osteoclast differentiation and activation. Nature, 423:337-342.

[8]ChenJY, HaoZW, LiHK, et al., 2024. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics, 14(10):3859-3899.

[9]ChenLF, WangY, HuangXQ, et al., 2025. Maltodextrin-driven MOF nano-antibacterial system for effective targeted bacteria and enhancing photodynamic therapy in bacterial keratitis. J Control Release, 380:1164-1183.

[10]ChenW, PanYF, ChuCH, et al., 2025. Microenvironment-responsive nanoparticles functionalized titanium implants mediate redox balance and immunomodulation for enhanced osseointegration. Mater Today Bio, 31:101628.

[11]ChoJ, FeldmanG, TomlinsonR, et al., 2024. Medication-related osteonecrosis of the jaw (MRONJ) systemic review: mevalonate pathway mechanisms explored. Oral Surg Oral Med Oral Pathol Oral Radiol, 138(4):475-483.

[12]DasD, ThackerH, PriyaK, et al., 2024. Complement component 5a receptor 1 and leukotriene B4 receptor 1 regulate neutrophil extracellular trap (NET) formation through Rap1a/B-Raf/ERK signaling pathway and their deficiency in term low birth weight newborns leads to deficient NETosis. Int Immunopharmacol, 142:113165.

[13]deOliveira PGFP, BonfanteEA, BergamoETP, et al., 2020. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis. Trends Endocrinol Metab, 31(8):596-610.

[14]DodsonM, Castro-PortuguezR, ZhangDD, 2019. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol, 23:101107.

[15]GuanHT, WangW, JiangZC, et al., 2024. Magnetic aggregation-induced bone-targeting nanocarrier with effects of piezo1 activation and osteogenic-angiogenic coupling for osteoporotic bone repair. Adv Mater, 36(13):e2312081.

[16]GuoQH, YangSS, NiGQ, et al., 2023. The preparation and effects of organic-inorganic antioxidative biomaterials for bone repair. Biomedicines, 12:70.

[17]HuangZY, JiangXZ, ZhangLC, et al., 2025. Multifunctional manganese-based nanogels catalyze immune energy metabolism to promote bone repair. Compos B Eng, 291:112005.

[18]IantomasiT, RomagnoliC, PalminiG, et al., 2023. Oxidative stress and inflammation in osteoporosis: molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci, 24(4):3772.

[19]InchingoloF, InchingoloAD, LatiniG, et al., 2024. The role of curcumin in oral health and diseases: a systematic review. Antioxidants (Basel), 13(6):660.

[20]JungS, ChangS, KimNE, et al., 2022. Curcumin/zeolitic imidazolate framework-8 nanoparticle-integrated microneedles for pH-responsive treatment of skin disorders. ACS Appl Nano Mater, 5(9):13671-13679.

[21]KovtunA, BergdoltS, HägeleY, et al., 2017. Complement receptors C5aR1 and C5aR2 act differentially during the early immune response after bone fracture but are similarly involved in bone repair. Sci Rep, 7:14061.

[22]The Lancet Diabetes & Endocrinology, 2021. Osteoporosis: overlooked in men for too long. Lancet Diabetes Endocrinol, 9(1):1.

[23]LeeSH, LeeKG, LeeJ, et al., 2023. Three-dimensional kagome structures in a PCL/HA-based hydrogel scaffold to lead slow BMP-2 release for effective bone regeneration. Bio-Des Manuf, 6:12-25.

[24]LiSW, LinYH, MoCZ, et al., 2024. Application of metal-organic framework materials in regenerative medicine. J Mater Chem B, 12(35):8543-8576.

[25]LiX, LiBE, ShiY, et al., 2021. Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today, 26(5):1226-1244.

[26]LiX, SungP, ZhangD, et al., 2023. Curcumin in vitro neuroprotective effects are mediated by p62/keap-1/Nrf2 and PI3K/AKT signaling pathway and autophagy inhibition. Physiol Res, 72(4):497-510.

[27]LiY, CaiZW, MaWJ, et al., 2024. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis. Bone Res, 12:14.

[28]LinPH, QianZY, LiuSB, et al., 2024. A single-cell RNA sequencing guided multienzymatic hydrogel design for self-regenerative repair in diabetic mandibular defects. Adv Mater, 36(50):e2410962.

[29]LinXF, WangQQ, GuCH, et al., 2020. Smart nanosacrificial layer on the bone surface prevents osteoporosis through acid-base neutralization regulated biocascade effects. J Am Chem Soc, 142(41):17543-17556.

[30]LiuJ, BaoXG, HuangJ, et al., 2024. TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics. Metabolism, 152:155767.

[31]LiuXF, LiaoYT, ShaoJH, et al., 2024. Angelicin improves osteoporosis in ovariectomized rats by reducing ROS production in osteoclasts through regulation of the KAT6A/Nrf2 signalling pathway. Chin Med, 19:91.

[32]ManolagasSC, 2010. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev, 31(3):266-300.

[33]MaqsoodM, SuntharalinghamS, KhanM, et al., 2024. Complement-mediated two-step NETosis: serum-induced complement activation and calcium influx generate NADPH oxidase-dependent NETs in serum-free conditions. Int J Mol Sci, 25(17):9625.

[34]MorgensternC, Lastres-BeckerI, DemirdöğenBC, et al., 2024. Biomarkers of NRF2 signalling: current status and future challenges. Redox Biol, 72:103134.

[35]MorrisG, GevezovaM, SarafianV, et al., 2022. Redox regulation of the immune response. Cell Mol Immunol, 19(10):1079-1101.

[36]NagarajuG, Udayabhanu, Shivaraj, et al., 2017. Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag‒ZnO nanomaterial. Mater Res Bull, 94:54-63.

[37]PereraKDC, WeragodaGK, HaputhanthriR, et al., 2021. Study of concentration dependent curcumin interaction with serum biomolecules using ATR-FTIR spectroscopy combined with principal component analysis (PCA) and partial least square regression (PLS-R). Vib Spectrosc, 116:103288.

[38]QiuX, LiuY, ShenH, et al., 2021. Single-cell RNA sequencing of human femoral head in vivo. Aging (Albany NY), 13(11):15595-15619.

[39]ShengN, XingF, WangJ, et al., 2023. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio, 23:100835.

[40]ShinJW, ChunKS, KimDH, et al., 2020. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem Pharmacol, 173:113820.

[41]SuN, VillicanaC, YangF, 2022. Immunomodulatory strategies for bone regeneration: a review from the perspective of disease types. Biomaterials, 286:121604.

[42]SunX, ZhangX, JiaoX, et al., 2022. Injectable bioactive polymethyl methacrylate‒hydrogel hybrid bone cement loaded with BMP-2 to improve osteogenesis for percutaneous vertebroplasty and kyphoplasty. Bio-Des Manuf, 5:318-332.

[43]TanLP, CaoZY, ChenH, et al., 2021. Curcumin reduces apoptosis and promotes osteogenesis of human periodontal ligament stem cells under oxidative stress in vitro and in vivo. Life Sci, 270:119125.

[44]TangH, YuYM, ZhanXX, et al., 2025. Zinc-cobalt bimetallic organic frameworks with antioxidative and osteogenic activities for periodontitis treatment. Small, 21(25):2412065.

[45]TeimouriM, MirzaeeM, NematiA, et al., 2024. Polysilsesquioxane decorated ZIF-8 as a potential pH-responsive vehicle for topical delivery and release of acyclovir and tetracycline: investigation of blood compatibility, cytotoxicity and antibacterial properties. Int J Biol Macromol, 271(Pt 1):132542.

[46]TomićSL, Babić RadićMM, VukovićJS, et al., 2023. Alginate-based hydrogels and scaffolds for biomedical applications. Mar Drugs, 21(3):177.

[47]TsukasakiM, TakayanagiH, 2019. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol, 19:626-642.

[48]WangJJ, XieXY, LiH, et al., 2024. Vascular endothelial cells-derived exosomes synergize with curcumin to prevent osteoporosis development. iScience, 27(4):109608.

[49]WangLF, LiangYJ, ZhouXH, et al., 2023. Nrf2 differentially regulates osteoclast and osteoblast differentiation for bone homeostasis. Biochem Biophys Res Commun, 674:19-26.

[50]WangY, SunL, DongZL, et al., 2025. Targeted inhibition of ferroptosis in bone marrow mesenchymal stem cells by engineered exosomes alleviates bone loss in smoking-related osteoporosis. Mater Today Bio, 31:101501.

[51]WangZ, WangX, HuangY, et al., 2024. Cav3.3-mediated endochondral ossification in a three-dimensional bioprinted GelMA hydrogel. Bio-Des Manuf, 7:983-999.

[52]WuWB, XiaoZX, ChenY, et al., 2020. CD39 produced from human GMSCs regulates the balance of osteoclasts and osteoblasts through the Wnt/β-catenin pathway in osteoporosis. Mol Ther, 28(6):1518-1532.

[53]YanXJ, ZhaoXY, FanMD, et al., 2024. Acidic environment-responsive metal organic framework-mediated dihydroartemisinin delivery for triggering production of reactive oxygen species in drug-resistant lung cancer. Int J Nanomedicine, 19:3847-3859.

[54]YangXM, YangXW, LuoP, et al., 2023. Novel one-pot strategy for fabrication of a pH-responsive bone-targeted drug self-frame delivery system for treatment of osteoporosis. Mater Today Bio, 20:100688.

[55]YangZ, ZhangXW, ZhuoFF, et al., 2023. Allosteric activation of transglutaminase 2 via inducing an “open” conformation for osteoblast differentiation. Adv Sci (Weinh), 10(18):2206533.

[56]YuB, WangCY, 2016. Osteoporosis: the result of an ‘aged’ bone microenvironment. Trends Mol Med, 22(8):641-644.

[57]ZhangFS, WuXT, LiQC, et al., 2024. Dual growth factor methacrylic alginate microgels combined with chitosan-based conduits facilitate peripheral nerve repair. Int J Biol Macromol, 268(Pt 1):131594.

[58]ZhangJY, ZhangRS, JinSJ, et al., 2024. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J Anim Physiol Anim Nutr (Berl), 108(6):1890-1905.

[59]ZhangW, ZhouXZ, HouWD, et al., 2023. Reversing the imbalance in bone homeostasis via sustained release of SIRT-1 agonist to promote bone healing under osteoporotic condition. Bioact Mater, 19:429-443.

[60]ZhangX, ChenJY, PeiX, et al., 2024. Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chin Chem Lett, 35(6):108889.

[61]ZhaoCQ, ShuCQ, YuJM, et al., 2023. Metal-organic frameworks functionalized biomaterials for promoting bone repair. Mater Today Bio, 21:100717.

[62]ZouDB, MouZY, WuWL, et al., 2021. TRIM33 protects osteoblasts from oxidative stress-induced apoptosis in osteoporosis by inhibiting FOXO3a ubiquitylation and degradation. Aging Cell, 20(7):e13367.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE