CLC number: TP39; O22
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-05-31
Cited: 5
Clicked: 7785
Yong-yi Shou, Yi-lun Huang. Combinatorial auction algorithm for project portfolio selection and scheduling to maximize the net present value[J]. Journal of Zhejiang University Science C, 2010, 11(7): 562-574.
@article{title="Combinatorial auction algorithm for project portfolio selection and scheduling to maximize the net present value",
author="Yong-yi Shou, Yi-lun Huang",
journal="Journal of Zhejiang University Science C",
volume="11",
number="7",
pages="562-574",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C0910479"
}
%0 Journal Article
%T Combinatorial auction algorithm for project portfolio selection and scheduling to maximize the net present value
%A Yong-yi Shou
%A Yi-lun Huang
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 7
%P 562-574
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910479
TY - JOUR
T1 - Combinatorial auction algorithm for project portfolio selection and scheduling to maximize the net present value
A1 - Yong-yi Shou
A1 - Yi-lun Huang
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 7
SP - 562
EP - 574
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910479
Abstract: Scheduling projects at the activity level increases the complexity of decision making of project portfolio selection but also expands the search space to include better project portfolios. An integer programming model is formulated for the project portfolio selection and scheduling problem. An iterative multi-unit combinatorial auction algorithm is proposed to select and schedule project portfolios through a distributed bidding mechanism. Two price update schemes are designed to adopt either a standard or an adaptive Walrasian tâtonnement process. Computational tests show that the proposed auction algorithm with the adaptive price update scheme selects and schedules project portfolios effectively and maximizes the total net present value. The price profile generated by the algorithm also provides managerial insights for project managers and helps to manage the scarce resources efficiently.
[1]Abrache, J., Crainic, T.G., Gendreau, M., Rekik, M., 2007. Combinatorial auctions. Ann. Oper. Res., 153(1):131-164.
[2]Arrow, K., Debreu, G., 1954. Existence of equilibrium for a competitive economy. Econometrica, 22(3):265-290.
[3]Badri, M.A., Davis, D., Davis, D., 2001. A comprehensive 0-1 goal programming model for project selection. Int. J. Proj. Manag., 19(4):243-252.
[4]Bikhchandani, S., Mamer, J., 1997. Competitive equilibrium in an exchange economy with indivisibilities. J. Econ. Theory, 74(2):385-413.
[5]Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E., 1999. Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res., 112(1):3-41.
[6]Carazo, A.F., Gomez, T., Molina, J., Hernandez-Diaz, A.G., Guerero, F.M., Caballero, R., 2010. Solving a comprehensive model for multiobjective project portfolio selection. Comput. Oper. Res., 37(4):630-639.
[7]Chen, J., Askin, R.G., 2009. Project selection, scheduling and resource allocation with time dependent returns. Eur. J. Oper. Res., 193(1):23-34.
[8]Cherkassky, B.V., Goldberg, A.V., 1997. On implementing the push-relabel method for the maximum flow problem. Algorithmica, 19(4):390-410.
[9]Chien, C.F., 2002. A portfolio-evaluation framework for selecting R&D projects. R&D Manag., 32(4):359-368.
[10]Coffin, M.A., Taylor, B.W., 1996. Multiple criteria R&D project selection and scheduling using fuzzy logic. Comput. Operat. Res., 23(3):207-220.
[11]Demeulemeester, E., Herroelen, W., 2002. Project Scheduling: a Research Handbook. Kluwer Academic Publishers, New York, p.203-206.
[12]de Vries, S., Vohra, S., 2003. Combinatorial auctions: a survey. INFORMS J. Comput., 15(3):284-309.
[13]Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., 2004. Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection. Ann. Oper. Res., 131(1-4):79-99.
[14]Doerner, K.F., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., 2006. Pareto ant colony optimization with ILP preprocessing in multiobjective project portfolio selection. Eur. J. Oper. Res., 171(3):830-841.
[15]Dramitinos, M., Stamoulis, G.D., Courcoubetis, C., 2007. An auction mechanism for allocating the bandwidth of networks to their users. Comput. Networks, 51(18):4979-4996.
[16]Dye, L.D., Pennypacker, J.S., 1999. Project Portfolio Management: Selecting and Prioritizing Projects for Competitive Advantage. Center for Business Practices, West Chester, PA, USA.
[17]Ertogral, K., Wu, S.D., 2000. Auction-theoretic coordination of production planning in the supply chain. IIE Trans., 32(10):931-940.
[18]Fisher, M.L., 1981. The Lagrangian relaxation method for solving integer programming problems. Manag. Sci., 27(1):1-18.
[19]Gabriel, S.A., Kumar, S., Ordonez, J., Nasserian, A., 2006. A multiobjective optimization model for project selection with probabilistic considerations. Soc.-Econ. Plan. Sci., 40(4):297-313.
[20]Ghasemzadeh, F., Archer, N., Iyogun, P., 1999. A zero-one model for project portfolio selection and scheduling. J. Oper. Res. Soc., 50(7):745-755. [10.1057/palgrave.jors. 2600767]
[21]Graves, R.L., Schrage, L., Sankaran, J., 1993. An auction method for course registration. Interfaces, 23(5):81-92.
[22]Gutjahr, W.J., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M., 2008. Competence-driven project portfolio selection, scheduling and staff assignment. Cent. Eur. J. Oper. Res., 16(3):281-306.
[23]Henriksen, A.D., Traynor, A.J., 1999. A practical R&D project-selection scoring tool. IEEE Trans. Eng. Manag., 46(2):158-170.
[24]Kolisch, R., 1996. Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res., 90(2):320-333.
[25]Kurtulus, I., Davis, E.W., 1982. Multi-project scheduling: categorization of heuristic rule performance. Manag. Sci., 28(2):161-172.
[26]Kurtulus, I., Narula, S.C., 1985. Multi-project scheduling: analysis of project performance. IIE Trans., 17(1):58-66.
[27]Kutanoglu, E., Wu, S.D., 1999. On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans., 31(9):813-826.
[28]Lim, A., Rodrigues, B., Xu, Z., 2008. Transportation procurement with seasonally varying shipper demand and volume guarantees. Oper. Res., 56(3):758-771.
[29]Linton, J.D., Walsh, S.T., Morabito, J., 2002. Analysis, ranking and selection of R&D projects in a portfolio. R&D Manag., 32(2):139-148.
[30]McAfee, R.P., McMillan, J., 1987. Auctions and bidding. J. Econ. Lit., 25(2):699-738.
[31]Meade, L.M., Presley, A., 2002. R&D project selection using the analytic network process. IEEE Trans. Eng. Manag., 49(1):59-66.
[32]Medaglia, A.L., Graves, S.B., Ringuest, J.L., 2007. A multi-objective evolutionary approach for linearly constrained project selection under uncertainty. Eur. J. Oper. Res., 179(3):869-894.
[33]Mohring, R.H., Schulz, A.S., Stork, F., Uetz, M., 2003. Solving project scheduling problems by minimum cut computations. Manag. Sci., 49(3):330-350.
[34]Nakamura, Y., Tsuji, M., 2004. Study on the allocation of R&D investment: method of evaluating and selecting R&D projects for investment. Int. J. Innov. Technol. Manag., 1(1):55-74.
[35]Patterson, J.H., 1984. A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Manag. Sci., 30(7):854-867.
[36]Rassenti, S.J., Smith, V.L., Bulfin, R.L., 1982. A combinatorial auction mechanism for airport time slot allocation. The Bell J. Econ., 13(2):402-417.
[37]Schmidt, R.L., 1993. A model for R&D project selection with combined benefit, outcome and resource interactions. IEEE Trans. Eng. Manag., 40(4):403-410.
[38]Stummer, C., Heidenberger, K., 2003. Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives. IEEE Trans. Eng. Manag., 50(2):175-183.
[39]Turner, J.R., 2008. The Handbook of Project-Based Management. McGraw-Hill, London, p.323-326.
[40]Yang, K.K., Sum, C.C., 1997. An evaluation of due date, resource allocation, project release, and activity scheduling rules in a multiproject environment. Eur. J. Oper. Res., 103(1):139-154.
[41]Yeo, K.T., 1993. Systems thinking and project management: time to reunite. Int. J. Proj. Manag., 11(2):111-117.
[42]Zhao, X., Luh, P.B., Wang, J., 1999. Surrogate gradient algorithm for Lagrangian relaxation. J. Optim. Theory Appl., 100(3):699-712.
Open peer comments: Debate/Discuss/Question/Opinion
<1>