CLC number: TP242.6
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-07-06
Cited: 4
Clicked: 11249
Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Journal of Zhejiang University Science C, 2012, 13(8): 593-600.
@article{title="An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot",
author="Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen",
journal="Journal of Zhejiang University Science C",
volume="13",
number="8",
pages="593-600",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100379"
}
%0 Journal Article
%T An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot
%A Hao-jie Zhang
%A Jian-wei Gong
%A Yan Jiang
%A Guang-ming Xiong
%A Hui-yan Chen
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 8
%P 593-600
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100379
TY - JOUR
T1 - An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot
A1 - Hao-jie Zhang
A1 - Jian-wei Gong
A1 - Yan Jiang
A1 - Guang-ming Xiong
A1 - Hui-yan Chen
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 8
SP - 593
EP - 600
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100379
Abstract: We present an iterative linear quadratic regulator (ILQR) method for trajectory tracking control of a wheeled mobile robot system. The proposed scheme involves a kinematic model linearization technique, a global trajectory generation algorithm, and trajectory tracking controller design. A lattice planner, which searches over a 3D (x, y, θ) configuration space, is adopted to generate the global trajectory. The ILQR method is used to design a local trajectory tracking controller. The effectiveness of the proposed method is demonstrated in simulation and experiment with a significantly asymmetric differential drive robot. The performance of the local controller is analyzed and compared with that of the existing linear quadratic regulator (LQR) method. According to the experiments, the new controller improves the control sequences (v, ω) iteratively and produces slightly better results. Specifically, two trajectories, ‘S’ and ‘8’ courses, are followed with sufficient accuracy using the proposed controller.
[1]Arimoto, S., 1996. Control Theory of Nonlinear Mechanical Systems: a Passivity-Based and Circuit-Theoretic Approach. Clarendon Press, Oxford, UK.
[2]Astudillo, L., Castillo, O., Aguilar, L.T., Martínez, R., 2007. Hybrid control for an autonomous wheeled mobile robot under perturbed torques. LNCS, 4529:594-603.
[3]Castillo, O., Aguilar, L.T., Cardenas, S., 2006. Fuzzy logic tracking control for unicycle mobile robots. Eng. Lett., 13(2):73-77.
[4]Divelbiss, A.W., Wen, J.T., 1997. Trajectory tracking control of a car-trailer system. IEEE Trans. Control Syst. Technol., 5(3):269-278.
[5]Kolmanovsky, I., McClamroch, N.H., 1995. Developments in nonholonomic control systems. IEEE Control Syst. Mag., 15(6):20-36.
[6]Kumar, U., Sukaranam, N., 2008. Backstepping based trajectory tracking control of a four wheeled mobile robot. Int. J. Adv. Robot. Syst., 5(4):403-410.
[7]Li, S.H., Tian, Y.P., 2000. Trajectory tracking control of mobile vehicle. Control Dec., 15(5):626-628.
[8]Likhachev, M., Ferguson, D., 2009. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J. Robot. Res., 28(8):933-945.
[9]Luca, A.R., Benedetto, M.D., 1993. Control of nonholonomic systems via dynamic compensation. Kybernetica, 29(6):593-608.
[10]Martínez, R., Castillo, O., Aguilar, L.T., 2009. Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci., 179(13):2158-2174.
[11]Morin, P., Samson, C., 2000. Practical Stabilization of a Class of Nonlinear Systems. Application to Chained Systems and Mobile Robots. Proc. 39th IEEE Conf. on Decision Control, p.2989-2994.
[12]Narvydas, G., Simutis, R., Raudonis, V., 2007. Autonomous Mobile Robot Control Using Fuzzy Logic and Genetic Algorithm. 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, p.460-464.
[13]Oriolo, G., de Luca, A., Vendittelli, M., 2002. WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans. Control Syst. Technol., 10(6):835-852.
[14]Pivtoraiko, M., Kelly, A., 2005. Generating Near Minimal Spanning Control Sets for Constrained Motion Planning in Discrete State Spaces. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3231-3237.
[15]Pivtoraiko, M., Knepper, R.A., Kelly, A., 2009. Differentially constrained mobile robot motion planning in state lattices. J. Field Robot., 26(3):308-333.
[16]Samson, C., 1993. Time-varying feedback stabilization of car-like mobile robots. Int. J. Robot. Res., 12(1):55-64.
[17]Slotine, J.J.E., Li, W., 1987. On the adaptive control of robot manipulators. Int. J. Robot. Res., 6(3):49-59.
[18]Tomei, P., 2000. Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control, 45(11):2164-2169.
[19]Velagic, J., Osmic, N., Lacevic, B., 2008. Neural network controller for mobile robot motion control. World Acad. Sci. Eng. Technol., 47:193-198.
[20]Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P., 1994. Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans. Autom. Control, 39(1):216-222.
[21]Whitcomb, L.L., Arimoto, S., Naniwa, T., Ozaki, F., 1996. Experiments in adaptive model-based robot force control. IEEE Control Syst. Mag., 16(1):49-57.
Open peer comments: Debate/Discuss/Question/Opinion
<1>