Full Text:   <1420>

CLC number: 

On-line Access: 2021-05-16

Received: 2021-11-18

Revision Accepted: 2021-04-10

Crosschecked: 0000-00-00

Cited: 0

Clicked: 872

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.1 P.107-132


The emerging technology of biohybrid micro-robots: a review

Author(s):  Zening Lin, Tao Jiang & Jianzhong Shang

Affiliation(s):  Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China; more

Corresponding email(s):   jiangtao@nudt.edu.cn, jz_shang_nudt@163.com

Key Words:  Biohybrid robots, Living cells, Actuator materials, Structure, Control methodologies

Share this article to: More

Zening Lin, Tao Jiang & Jianzhong Shang . The emerging technology of biohybrid micro-robots: a review[J]. Journal of Zhejiang University Science D, 2022, 5(1): 107-132.

@article{title="The emerging technology of biohybrid micro-robots: a review",
author="Zening Lin, Tao Jiang & Jianzhong Shang ",
journal="Journal of Zhejiang University Science D",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T The emerging technology of biohybrid micro-robots: a review
%A Zening Lin
%A Tao Jiang & Jianzhong Shang
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 1
%P 107-132
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00135-6

T1 - The emerging technology of biohybrid micro-robots: a review
A1 - Zening Lin
A1 - Tao Jiang & Jianzhong Shang
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 1
SP - 107
EP - 132
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00135-6

In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.

国防科大蒋涛、尚建忠&林泽宁 |新兴的生物混合微型机器人技术综述


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE