Full Text:   <1068>

CLC number: 

On-line Access: 2021-08-23

Received: 2020-11-20

Revision Accepted: 2021-07-20

Crosschecked: 0000-00-00

Cited: 0

Clicked: 880

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2022 Vol.5 No.1 P.163-173

http://doi.org/10.1007/s42242-021-00160-5


Hierarchical platinumiridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity


Author(s):  Linze Li, Changqing Jiang & Luming Li

Affiliation(s):  National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China View author publications; more

Corresponding email(s):   jiangcq13@tsinghua.edu.cn, lilm@tsinghua.edu.cn

Key Words:  Charge storage capacity, Femtosecond laser, Hierarchical structures, Neural electrodes, Superwicking


Share this article to: More

Linze Li, Changqing Jiang & Luming Li . Hierarchical platinumiridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity[J]. Journal of Zhejiang University Science D, 2022, 5(1): 163-173.

@article{title="Hierarchical platinumiridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity",
author="Linze Li, Changqing Jiang & Luming Li ",
journal="Journal of Zhejiang University Science D",
volume="5",
number="1",
pages="163-173",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1007/s42242-021-00160-5"
}

%0 Journal Article
%T Hierarchical platinumiridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity
%A Linze Li
%A Changqing Jiang & Luming Li
%J Journal of Zhejiang University SCIENCE D
%V 5
%N 1
%P 163-173
%@ 1869-1951
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00160-5

TY - JOUR
T1 - Hierarchical platinumiridium neural electrodes structured by femtosecond laser for superwicking interface and superior charge storage capacity
A1 - Linze Li
A1 - Changqing Jiang & Luming Li
J0 - Journal of Zhejiang University Science D
VL - 5
IS - 1
SP - 163
EP - 173
%@ 1869-1951
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00160-5


Abstract: 
The interfacial performance of implanted neural electrodes is crucial for stimulation safety and the recording quality of neuronal activity. This paper proposes a novel surface architecture and optimization strategy for the platinumiridium (PtIr) electrode to optimize electrochemical performance and wettability. A series of surface micro/nano structures were fabricated on PtIr electrodes with different combinations of four adjustable laser-processing parameters. Subsequently, the electrodes were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and wetting behavior. The results show that electrode performance strongly depends on the surface morphology. Increasing scanning overlap along with moderate pulse energy and the right number of pulses leads to enriched surface micro/nano structures and improved electrode performance. It raises the maximum charge storage capacity to 128.2 mC/cm2 and the interface capacitance of electrodes to 3.0??104 ?F/cm2 for the geometric area, compared with 4.6 mC/cm2 and 443.1 ?F/cm2, respectively, for the smooth PtIr electrode. The corresponding optimal results for the optically measured area are 111.8 mC/cm2 and 2.6??104 ?F/cm2, which indicate the contribution of finer structures to the ablation profile. The hierarchical structures formed by the femtosecond laser dramatically enhanced the wettability of the electrode interface, giving it superwicking properties. A wicking speed of approximately 80 mm/s was reached. Our optimization strategy, leading to superior performance of the superwicking PtIr interface, is promising for use in new neural electrodes.

清华大学姜长青、李路明等 | 飞秒激光结构化的层级铂铱神经电极具有超芯吸界面和优异的电荷存储能力

本研究论文聚焦基于飞秒激光技术的铂铱(Pt-Ir)电极的新型表面结构及其制备策略。植入式神经电极的界面性能对于安全的电刺激和高质量的电生理活动记录至关重要。飞秒激光技术通过飞秒级别(1 fs=10−15 s)的超短脉冲实现太瓦量级(1 TW=1012 W)的峰值功率,近年来成为了创建表面微纳结构的最佳方法之一。本文基于飞秒激光技术提出了铂铱电极的新型表面结构及其制备策略,极大幅度地提高了界面电化学性能,同时产生出超芯吸的表面浸润特性。本文通过飞秒激光加工参数的不同组合,在铂铱电极上制备了一系列表面微纳结构。随后,对电极进行了扫描电镜、能量色散X射线光谱、循环伏安测试、电化学阻抗谱和润湿行为等表征。结果表明,电极性能在很大程度上取决于表面形貌。提高扫描重叠率并控制适度的脉冲能量和脉冲数量,可以丰富表面微纳结构,同时改善电极性能。经过处理后,几何面积上的最大电荷存储能力提高为传统光滑Pt-Ir电极的28倍,界面电容显著增大。飞秒激光处理后形成的层级结构极大地增强了电极界面的润湿性,使其具有对水的超芯吸特性,芯吸速度可达约80 mm/s,既直观体现了电极性能,还能避免实际植入中的气泡影响。本文的优化策略实现了超芯吸的Pt-Ir界面和优异的电化学性能,有望应用于新的神经电极。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE