Full Text:   <3012>

Summary:  <1948>

CLC number: TP277

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-09-09

Cited: 0

Clicked: 6945

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-dong Tan

http://orcid.org/0000-0001-5458-7693

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.10 P.848-857

http://doi.org/10.1631/FITEE.1500011


Fault evolution-test dependency modeling for mechanical systems


Author(s):  Xiao-dong Tan, Jian-lu Luo, Qing Li, Bing Lu, Jing Qiu

Affiliation(s):  1Department of Electronic Technology, Officers College of PAP, Chengdu 610213, China; more

Corresponding email(s):   xdt1010@126.com

Key Words:  Mechanical systems, Design for testability (DFT), Fault evolution-test dependency model (FETDM)


Xiao-dong Tan, Jian-lu Luo, Qing Li, Bing Lu, Jing Qiu. Fault evolution-test dependency modeling for mechanical systems[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(10): 848-857.

@article{title="Fault evolution-test dependency modeling for mechanical systems",
author="Xiao-dong Tan, Jian-lu Luo, Qing Li, Bing Lu, Jing Qiu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="10",
pages="848-857",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500011"
}

%0 Journal Article
%T Fault evolution-test dependency modeling for mechanical systems
%A Xiao-dong Tan
%A Jian-lu Luo
%A Qing Li
%A Bing Lu
%A Jing Qiu
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 10
%P 848-857
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500011

TY - JOUR
T1 - Fault evolution-test dependency modeling for mechanical systems
A1 - Xiao-dong Tan
A1 - Jian-lu Luo
A1 - Qing Li
A1 - Bing Lu
A1 - Jing Qiu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 10
SP - 848
EP - 857
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500011


Abstract: 
Tracking the process of fault growth in mechanical systems using a range of tests is important to avoid catastrophic failures. So, it is necessary to study the design for testability (DFT). In this paper, to improve the testability performance of mechanical systems for tracking fault growth, a fault evolution-test dependency model (FETDM) is proposed to implement DFT. A testability analysis method that considers fault trackability and predictability is developed to quantify the testability performance of mechanical systems. Results from experiments on a centrifugal pump show that the proposed FETDM and testability analysis method can provide guidance to engineers to improve the testability level of mechanical systems.

Design for testability is important to avoid catastrophic failures in mechanical systems. In order to improve the testability performance of tracking fault growth, a Fault Evolution-Test Dependency Model is proposed in this paper. In order to quantify the testability performance, the testability analysis method is developed. The experimental results in centrifugal pumps show the method is effective. There is some innovation in this paper.

基于故障演化-测试相关性可测性建模方法

目的:建立系统中典型故障演化过程中的相关参数与系统中测试节点的关联关系。分析系统对故障的检测、隔离,对故障演化过程跟踪和对故障预测能力的可测性水平,进而指导系统的可测性设计。
创新点:通过故障-征兆、征兆-测试矩阵描述系统故障演化与测试的相关性关系。结合测试节点的灵敏度、检测时间、检测概率等固有属性,建立量化测试对故障演化过程跟踪能力的指标,在故障检测率、故障隔离率等指标基础上,提出故障可跟踪率和故障可预测率的可测性指标。
方法:首先,分析系统中典型故障的演化机理,建立定量描述故障与表征其严重程度的征兆参数的相关性矩阵。其次,使用能量流图分析方法,建立征兆参数与系统中测试节点间的能量传递关系,进而获得征兆参数与测试间的动力学关系。再次,构建衡量系统对故障可检测、可隔离、可跟踪和预测的可测性指标体系,并提出相应的可测性指标预计方法。最后,以某离心泵系统为案例,对本文所提理论的有效性进行验证。
结论:基于故障演化-测试相关性可测性建模方法能定性地描述系统中故障与表征其严重程度的征兆参数间的关系,并能从定量的角度建立各个征兆参数与系统中测试节点的关系。故障可跟踪率和故障可预测率能较好地描述系统中固有测试节点对故障跟踪和预测的水平,以此为基础提出的可测性预计方法能有效预计系统对故障的检测、隔离、跟踪和预测水平,预计结果能有效指导系统的可测性设计。论文的相关理论和方法对于提高系统对故障的跟踪和对故障的预测的可测性水平具有指导意义。

关键词:机械系统;可测性设计;故障演化-测试相关性模型

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alabakhshizadeh, A., Iskandarani, Y., Hovland, G., et al., 2011. Analysis, modeling and simulation of mechatronic systems using the Bond Graph method. Model. Identif. Contr., 32(1):35-45.

[2]Biswas, G., Mahadevan, S., 2007. A hierarchical model-based approach to systems health management. Proc. IEEE Aerospace Conf., p.1-14.

[3]Byington, C.S., Watson, M., Edwards, D., et al., 2004. A model-based approach to prognostics and health management for flight control actuators. Proc. IEEE Aerospace Conf., p.3551-3562.

[4]Deb, S., Pattipati, K.R., Raghavan, V., et al., 1995. Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis. IEEE Aerosp. Electron. Syst. Mag., 10(5):14-25.

[5]Gao, Y.C., Feng, Y.X., Tan, J.R., 2014. Multi-principle preventive maintenance: a design-oriented scheduling study for mechanical systems. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 15(11):862-872.

[6]Hess, A., Stecki, J.S., Rudov-Clark, S.D., 2008. The maintenance aware design environment: development of an aerospace PHM software tool. Proc. Conf. on Prognostics and Health Management, p.1-9.

[7]Johnson, J., 2008. Fault Propagation Timing Analysis to Aid in the Selection of Sensors for Health Management Systems. MS Thesis, University of Missouri-Rolla, USA.

[8]Kallesøe, C., 2005. Fault Detection and Isolation in Centrifugal Pumps. PhD Thesis, Aalborg University, Denmark.

[9]Kurtoglu, T., Tumer, I.Y., 2008. A graph-based fault identification and propagation framework for functional design of complex system. J. Mech. Des., 130(5):051401.1-051401.8.

[10]Lin, C., Hayes, L., Malais, A., et al., 1998. A new dependency model based testability analyzer. Proc. IEEE Systems Readiness Technology Conf., p.187-191.

[11]Pattipati, K.R., Raghavan, V., Shakeri, M., et al., 1994. TEAMS: testability engineering and maintenance system. Proc. American Control Conf., p.1989-1995.

[12]Sheppard, J.W., 1996. Maintaining diagnostic truth with information flow models. Proc. IEEE Conf. Record Test Technology and Commercialization, p.447-454.

[13]Simpson, W.R., Balaban, H.S., 1982. The ARINC research system testability and maintenance program (STAMP). Proc. IEEE AUTOTESTCON Conf., p.88-95.

[14]Simpson, W.R., Sheppard, J.W., Unkle, C.R., 1989. POINTER—an intelligent maintenance aid. Proc. IEEE Automatic Testing Conf., p.26-31.

[15]Stone, R.B., Wood, K.L., 2000. Development of a functional basis for design. J. Mech. Des., 122(4):359-370.

[16]Tan, X.D., Qiu, J., Liu, G.J., et al., 2013. A novel approach of testability modeling and analysis for PHM systems based on failure evolution mechanism. Chin. J. Aeronaut., 26(3):766-776.

[17]Yang, S.M., Qiu, J., Liu, G.J., 2014. Hierarchical model-based approach to testability modeling and analysis for PHM of aerospace systems. J. Aerosp. Eng., 27(1):131-139.

[18]Zhang, G.F., 2005. Optimum Sensor Localization/Selection in a Diagnostic/Prognostic Architecture. PhD Thesis, Georgia Institute of Technology, USA.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE