Full Text:   <1833>

CLC number: 

On-line Access: 2021-06-18

Received: 2021-01-05

Revision Accepted: 2021-05-13

Crosschecked: 0000-00-00

Cited: 0

Clicked: 2363

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2021 Vol.4 No.4 P.757-775


Application oflung microphysiological systems toCOVID?19 modeling anddrug discovery: areview

Author(s):  ArgusM.Sun, TylerHofman, BaoQ.Luu, NureddinAshammakhi, SongLi

Affiliation(s):  Department ofBioengineering, Samueli School ofEngineering, University ofCalifornia - Los Angeles, 420 Westwood Plaza 5121 Engineering V University of California, LosAngeles, CA90095-1600, USA; more

Corresponding email(s):   argus.m.sun@ucla.edu, n.ashammakhi@ucla.edu

Key Words:  Bioengineering, Microfuidics, COVID-19,

Share this article to: More

ArgusM.Sun, TylerHofman, BaoQ.Luu, NureddinAshammakhi, SongLi. Application oflung microphysiological systems toCOVID?19 modeling anddrug discovery: areview[J]. Journal of Zhejiang University Science D, 2021, 4(4): 757-775.

@article{title="Application oflung microphysiological systems toCOVID?19 modeling anddrug discovery: areview",
author="ArgusM.Sun, TylerHofman, BaoQ.Luu, NureddinAshammakhi, SongLi",
journal="Journal of Zhejiang University Science D",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Application oflung microphysiological systems toCOVID?19 modeling anddrug discovery: areview
%A ArgusM.Sun
%A TylerHofman
%A BaoQ.Luu
%A NureddinAshammakhi
%A SongLi
%J Journal of Zhejiang University SCIENCE D
%V 4
%N 4
%P 757-775
%@ 1869-1951
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1007/s42242-021-00136-5

T1 - Application oflung microphysiological systems toCOVID?19 modeling anddrug discovery: areview
A1 - ArgusM.Sun
A1 - TylerHofman
A1 - BaoQ.Luu
A1 - NureddinAshammakhi
A1 - SongLi
J0 - Journal of Zhejiang University Science D
VL - 4
IS - 4
SP - 757
EP - 775
%@ 1869-1951
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1007/s42242-021-00136-5

There is a pressing need for efective therapeutics for coronavirus disease 2019 (COVID-19), the respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The process of drug development is a costly and meticulously paced process, where progress is often hindered by the failure of initially promising leads. To aid this challenge, invitro human microphysiological systems need to be refned and adapted for mechanistic studies and drug screening, thereby saving valuable time and resources during a pandemic crisis. The SARS-CoV-2 virus attacks the lung, an organ where the unique three-dimensional (3D) structure of its functional units is critical for proper respiratory function. The invitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between diferent cell types. Current model systems include Transwell, organoid and organ-on-a-chip or microphysiological systems (MPSs). We review models that have direct relevance toward modeling the pathology of COVID-19, including the processes of infammation, edema, coagulation, as well as lung immune function. We also consider the practical issues that may infuence the design and fabrication of MPS. The role of lung MPS is addressed in the context of multi-organ models, and it is discussed how high-throughput screening and artifcial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.

UCLA Argus M. Sun等 | 肺微生理系统在COVID-19建模和药物发现中的应用


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE