Full Text:   <2436>

Summary:  <1926>

CLC number: TP393

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2015-08-25

Cited: 2

Clicked: 7075

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yun-fang Chen

http://orcid.org/0000-0002-7897-3588

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2015 Vol.16 No.10 P.805-816

http://doi.org/10.1631/FITEE.1500025


Time-series prediction based on global fuzzy measure in social networks


Author(s):  Li-ming Yang, Wei Zhang, Yun-fang Chen

Affiliation(s):  Department of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Corresponding email(s):   chenyf@njupt.edu.cn

Key Words:  Time-series network, Fuzzy network, Fuzzy Markov chain


Share this article to: More |Next Article >>>

Li-ming Yang, Wei Zhang, Yun-fang Chen. Time-series prediction based on global fuzzy measure in social networks[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(10): 805-816.

@article{title="Time-series prediction based on global fuzzy measure in social networks",
author="Li-ming Yang, Wei Zhang, Yun-fang Chen",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="16",
number="10",
pages="805-816",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500025"
}

%0 Journal Article
%T Time-series prediction based on global fuzzy measure in social networks
%A Li-ming Yang
%A Wei Zhang
%A Yun-fang Chen
%J Frontiers of Information Technology & Electronic Engineering
%V 16
%N 10
%P 805-816
%@ 2095-9184
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500025

TY - JOUR
T1 - Time-series prediction based on global fuzzy measure in social networks
A1 - Li-ming Yang
A1 - Wei Zhang
A1 - Yun-fang Chen
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 16
IS - 10
SP - 805
EP - 816
%@ 2095-9184
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500025


Abstract: 
Social network analysis (SNA) is among the hottest topics of current research. Most measurements of SNA methods are certainty oriented, while in reality, the uncertainties in relationships are widely spread to be overridden. In this paper, fuzzy concept is introduced to model the uncertainty, and a similarity metric is used to build a fuzzy relation model among individuals in the social network. The traditional social network is transformed into a fuzzy network by replacing the traditional relations with fuzzy relation and calculating the global fuzzy measure such as network density and centralization. Finally, the trend of fuzzy network evolution is analyzed and predicted with a fuzzy Markov chain. Experimental results demonstrate that the fuzzy network has more superiority than the traditional network in describing the network evolution process.

The topic, as the authors asserted in the paper, is interesting and relevant. The authors did a good presentation of the mathematical model, which seems solid enough. Meanwhile, the experimental results illustrated that the adopted fuzzy network has more superiority than traditional network in describing the network evolution process.

基于社会网络整体模糊化度量的时序预测方法

目的:面向真实世界的时序社会网络,实现基于其复杂关系不确定性的模糊化模型的建立,同时实现网络整体模糊化度量的时序预测。
创新点:提出一种基于节点相似度的社会网络模糊化方法,并对网络模糊密度与模糊中心势进行预测,实现模糊网络的度量预测。
方法:首先,考虑真实社会网络普遍存在的不确定性因素,提出一种基于网络节点相似度的模糊化方法,通过用模糊关系代替传统关系,可以将传统的社会网络转化为模糊的社会网络(图2)。然后,针对需要观测的网络密度及中心势两个整体度量(图1),同样根据网络的模糊化方法的定义可以得到网络模糊密度及模糊中心势。最后,结合模糊马尔可夫链模型,通过调整模糊度量的隶属函数以及模糊状态划分,来预测模糊度量变化并分析网络演化趋势。
结论:针对真实的社会网络,提出一种社会网络的模糊化方法,实验说明了模糊网络可以比传统网络更好地描述网络演化过程。

关键词:时序网络;模糊网络;模糊马尔可夫链

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Araujo, E., 2008. Social relationship explained by fuzzy logic. Proc. IEEE Int. Conf. on Fuzzy Systems, p.2129-2134.

[2]Bastani, S., Jafarabad, A.K., Zarandi, M.H.F., 2013. Fuzzy models for link prediction in social networks. Int. J. Intell. Syst., 28(8):768-786.

[3]Brunelli, M., Fedrizzi, M., 2009. A fuzzy approach to social network analysis. Proc. Int. Conf. on Advances in Social Network Analysis and Mining, p.225-230.

[4]Brunelli, M., Fedrizzi, M., Fedrizzi, M., 2014. Fuzzy $m$-ary adjacency relations in social network analysis: optimization and consensus evaluation. Inform. Fusion, 17:36-45.

[5]de Sa, H.R., Prudencio, R.B.C., 2011. Supervised link prediction in weighted networks. Proc. Int. Conf. on Neural Networks, p.2281-2288.

[6]Ebel, H., Davidsen, J., Bornholdt, S., 2002. Dynamics of social networks. Complexity, 8(2):24-27.

[7]Freeman, L.C., 1978. Centrality in social networks conceptual clarification. Soc. Netw., 1(3):215-239.

[8]Freeman, L.C., 2004. The Development of Social Network Analysis: a Study in the Sociology of Science. Empirical Press, Vancouver.

[9]Hasan, M.A., Chaoji, V., Salem, S., et al., 2006. Link prediction using supervised learning. Proc. SDM Workshop on Link Analysis, Counter-Terrorism and Security, p.1-10.

[10]He, Y.L., Liu, J.N.K., Hu, Y.X., et al., 2015. OWA operator based link prediction ensemble for social network. Expert Syst. Appl., 42(1):21-50.

[11]Huang, Z., Lin, D.K.J., 2009. The time-series link prediction problem with applications in communication surveillance. INFORMS J. Comput., 21(2):286-303.

[12]Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaud. Sci. Nat., 37:547-579 (in French).

[13]Jin, E.M., Girvan, M., Newman, M.E.J., 2001. The structure of growing social networks. Available from http://ideas.repec.org/p/wop/safiwp/01-06-032.html [Accessed on June 30, 2015].

[14]Khorasani, E.S., Rahimi, S., Patel, P., et al., 2011. CWJess: an expert system shell for computing with words. Proc. IEEE Int. Conf. on Information Reuse and Integration, p.396-399.

[15]Nair, P.S., Sarasamma, S.T., 2007. Data mining through fuzzy social network analysis. Proc. 26th Annual Meeting of the North American Fuzzy Information Processing Society, p.251-255.

[16]Ryoke, M., Nakamori, Y., Suzuki, K., 1995. Adaptive fuzzy clustering and fuzzy prediction models. Proc. Int. Joint Conf. of 4th IEEE Int. Conf. on Fuzzy Systems and 2nd Int. Fuzzy Engineering Symp., p.2215-2220.

[17]Yan, B., Gregory, S., 2011. Finding missing edges and communities in incomplete networks. J. Phys. A, 44:495102.1-495102.15.

[18]Zadeh, L.A., 1965. Fuzzy sets. Inform. Contr., 8(3):338-353.

[19]Zhang, J.Y., Borland, R., Coghill, K., 2011. Evaluating the effect of health warnings in influencing Australian smokers’ psychosocial and quitting behaviours using fuzzy causal network. Expert Syst. Appl., 38(6):6430-6438.

[20]Zhu, J., Xie, Q., Chin, E.J., 2012. A hybrid time-series link prediction framework for large social network. Proc. 23rd Int. Conf. on Database and Expert Systems Applications, p.345-359.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE