CLC number: TP391; TP751
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-12-09
Cited: 0
Clicked: 6934
Shao-fan Wang, Chun Li, De-hui Kong, Bao-cai Yin. Extracting hand articulations from monocular depth images using curvature scale space descriptors[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(1): 41-54.
@article{title="Extracting hand articulations from monocular depth images using curvature scale space descriptors",
author="Shao-fan Wang, Chun Li, De-hui Kong, Bao-cai Yin",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="1",
pages="41-54",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500126"
}
%0 Journal Article
%T Extracting hand articulations from monocular depth images using curvature scale space descriptors
%A Shao-fan Wang
%A Chun Li
%A De-hui Kong
%A Bao-cai Yin
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 1
%P 41-54
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500126
TY - JOUR
T1 - Extracting hand articulations from monocular depth images using curvature scale space descriptors
A1 - Shao-fan Wang
A1 - Chun Li
A1 - De-hui Kong
A1 - Bao-cai Yin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 1
SP - 41
EP - 54
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500126
Abstract: We propose a framework of hand articulation detection from a monocular depth image using curvature scale space (CSS) descriptors. We extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. Then we recover the undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Experimental results show that our method captures the hand articulations more precisely compared with three state-of-the-art appearance-based approaches.
This paper proposed a framework of hand articulation detection from a monocular depth image using the curvature scale space (CSS) descriptors. The authors extract the hand contour from an input depth image, and obtain the fingertips and finger-valleys of the contour using the local extrema of a modified CSS map of the contour. This is the main contribution their work offers. They also recover undetected fingertips according to the local change of depths of points in the interior of the contour. Compared with traditional appearance-based approaches using either angle detectors or convex hull detectors, the modified CSS descriptor extracts the fingertips and finger-valleys more precisely since it is more robust to noisy or corrupted data; moreover, the local extrema of depths recover the fingertips of bending fingers well while traditional appearance-based approaches hardly work without matching models of hands. Totally, this paper uses a practical method to solve the hand articulation detection problem using depth data only.
[1]Abbasi, S., Mokhtarian, F., Kittler, J., 1999. Curvature scale space image in shape similarity retrieval. Multimedia Syst., 7(6):467-476.
[2]Athitsos, V., Sclaroff, S., 2002. An appearance-based framework for 3D hand shape classification and camera viewpoint estimation. Proc. 5th IEEE Int. Conf. on Automatic Face and Gesture Recognition, p.40-45.
[3]Athitsos, V., Sclaroff, S., 2003. Estimating 3D hand pose from a cluttered image. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.432-439.
[4]Cerezo, T., 2012. 3D hand and finger recognition using Kinect. Technical Report, Universidad de Granada, Spain. Available at http://frantracerkinectft.codeplex.com.
[5]Chang, W.Y., Chen, C.S., Jian, Y.D., 2008. Visual tracking in high-dimensional state space by appearance-guided particle filtering. IEEE Trans. Image Process., 17(7):1054-1067.
[6]de La Gorce, M., Fleet, D.J., Paragios, N., 2011. Model-based 3D hand pose estimation from monocular video. IEEE Trans. Patt. Anal. Mach. Intell., 33(9):1793-1805.
[7]Feng, Z., Yang, B., Chen, Y., et al., 2011. Features extraction from hand images based on new detection operators. Patt. Recog., 44(5):1089-1105.
[8]Keskin, C., Kıraç, F., Kara, Y.E., et al., 2011. Real time hand pose estimation using depth sensors. In: Fossati, A., Gall, J., Grabner, H., et al. (Eds.), Consumer Depth Cameras for Computer Vision, Springer, London, p.119-137.
[9]Kirac, F., Kara, Y.E., Akarun, L., 2014. Hierarchically constrained 3D hand pose estimation using regression forests from single frame depth data. Patt. Recog. Lett., 50:91-100.
[10]Lee, D., Lee, S., 2011. Vision-based finger action recognition by angle detection and contour analysis. ETRI J., 33(3):415-422.
[11]Ma, Z., Wu, E., 2014. Real-time and robust hand tracking with a single depth camera. Vis. Comput., 30(10):1133-1144.
[12]Maisto, M., Panella, M., Liparulo, L., et al., 2013. An accurate algorithm for the identification of fingertips using an RGB-D camera. IEEE J. Emerg. Sel. Topics Circ. Syst., 3(2):272-283.
[13]Morshidi, M., Tjahjadi, T., 2014. Gravity optimised particle filter for hand tracking. Patt. Recog., 47(1):194-207.
[14]Nagarajan, S., Subashini, T., Ramalingam, V., 2012. Vision based real time finger counter for hand gesture recognition. Int. J. Technol., 2(2):1-5.
[15]Oikonomidis, I., Kyriazis, N., Argyros, A.A., 2011. Efficient model-based 3D tracking of hand articulations using Kinect. BMVC, 1(2):1-11.
[16]Qian, C., Sun, X., Wei, Y., et al., 2014. Realtime and robust hand tracking from depth. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1106-1113.
[17]Ren, Z., Yuan, J., Zhang, Z., 2011. Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. Proc. 19th ACM Int. Conf. on Multimedia, p.1093-1096.
[18]Rosales, R., Athitsos, V., Sigal, L., et al., 2001. 3D hand pose reconstruction using specialized mappings. Proc. 8th IEEE Int. Conf. on Computer Vision, p.378-385.
[19]Schlattmann, M., Kahlesz, F., Sarlette, R., et al., 2007. Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization. Comput. Graph. Forum, 26(3):467-476.
[20]Tomasi, C., Petrov, S., Sastry, A., 2003. 3D tracking = classification + interpolation. Proc. 9th IEEE Int. Conf. on Computer Vision, p.1441-1448.
[21]Tompson, J., Stein, M., Lecun, Y., et al., 2014. Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph., 33(5):169.1-169.10.
Open peer comments: Debate/Discuss/Question/Opinion
<1>