CLC number: TP391
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2016-03-17
Cited: 5
Clicked: 8538
Miguel Oliver, Francisco Montero, Jos Pascual Molina, Pascual Gonzlez, Antonio Fernndez-Caballero. Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(4): 348-364.
@article{title="Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors",
author="Miguel Oliver, Francisco Montero, Jos Pascual Molina, Pascual Gonzlez, Antonio Fernndez-Caballero",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="4",
pages="348-364",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500347"
}
%0 Journal Article
%T Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors
%A Miguel Oliver
%A Francisco Montero
%A Jos Pascual Molina
%A Pascual Gonzlez
%A Antonio Fernndez-Caballero
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 4
%P 348-364
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500347
TY - JOUR
T1 - Multi-camera systems for rehabilitation therapies: a study of the precision of Microsoft Kinect sensors
A1 - Miguel Oliver
A1 - Francisco Montero
A1 - Jos Pascual Molina
A1 - Pascual Gonzlez
A1 - Antonio Fernndez-Caballero
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 4
SP - 348
EP - 364
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500347
Abstract: This paper seeks to determine how the overlap of several infrared beams affects the tracked position of the user, depending on the angle of incidence of light, distance to the target, distance between sensors, and the number of capture devices used. We also try to show that under ideal conditions using several kinect sensors increases the precision of the data collected. The results obtained can be used in the design of telerehabilitation environments in which several RGB-D cameras are needed to improve precision or increase the tracking range. A numerical analysis of the results is included and comparisons are made with the results of other studies. Finally, we describe a system that implements intelligent methods for the rehabilitation of patients based on the results of the tests carried out.
[1]Bonnechère, B., Jansen, B., Salvia, P., et al., 2014. Determination of the precision and accuracy of morphological measurements using the KinectTM} sensor: comparison with standard stereophotogrammetry. Ergonomics, 57(4):622-631.
[2]Chang, Y., Chen, S., Huang, J., 2011. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Deve. Disabil., 32(6):2566-2570.
[3]Essmaeel, K., Gallo, L., Damiani, E., et al., 2012. Temporal denoising of Kinect depth data. Proc. 8th Int. Conf. on Signal Image Technology and Internet Based Systems, p.47-52.
[4]Essmaeel, K., Gallo, L., Damiani, E., et al., 2014. Comparative evaluation of methods for filtering Kinect depth data. Multim. Tools Appl., 74(17):7331-7354.
[5]Fernández-Baena, A., Susín, A., Lligadas, X., 2012. Biomechanical validation of upper-body and lower-body joint movements of Kinect motion capture data for rehabilitation treatments. Proc. 4th Int. Conf. on Intelligent Networking and Collaborative Systems, p.656-661.
[6]Freitas, D., da Gama, A., Figueiredo, L., et al., 2012. Development and evaluation of a Kinect based motor rehabilitation game. Proc. SBGames, p.144-153.
[7]Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., et al., 2013. Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6):1800-1806.
[8]Haggag, H., Hossny, M., Filippidis, D., et al., 2013. Measuring depth accuracy in RGBD cameras. Proc. 7th Int. Conf. on Signal Processing and Communication Systems, p.1-7.
[9]Khoshelham, K., Elberink, S.O., 2012. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors, 12(2):1437-1454.
[10]Mallick, T., Das, P.P., Majumdar, A.K., 2014. Characterizations of noise in Kinect depth images: a review. IEEE Sens. J., 14(6):1731-1740.
[11]Mkhitaryan, A., Burschka, D., 2013. RGB-D sensor data correction and enhancement by introduction of an additional RGB view. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1077-1083.
[12]Olesen, S.M., Lyder, S., Kraft, D., et al., 2015. Real-time extraction of surface patches with associated uncertainties by means of Kinect cameras. J. Real-Time Image Process., 10(1):105-118.
[13]Oliver, M., Molina, J.P., Montero, F., et al., 2014a. A multisensor system for positioning of multiple users. Proc. XV Int. Conf. on Human Computer Interaction, Article 59.
[14]Oliver, M., Molina, J.P., Montero, F., et al., 2014b. Wireless multisensory interaction in an intelligent rehabilitation environment. Proc. 5th Int. Symp. on Ambient Intelligence, p.193-200.
[15]Oliver, M., Montero, F., Molina, J.P., et al., 2015a. How many Kinects should look at you? A multi-agent system approach. Proc. 13th Int. Conf. on Practical Applications of Agents and Multi-Agent Systems, p.105-112.
[16]Oliver, M., Montero, F., Fernández-Caballero, A., et al., 2015b. RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Syst., 32(3):370-380.
[17]Regazzoni, D., de Vecchi, G., Rizzi, C., 2014. RGB cams vs RGB-D sensors: low cost motion capture technologies performances and limitations. J. Manuf. Syst., 33(4):719-728.
Open peer comments: Debate/Discuss/Question/Opinion
<1>