Full Text:   <2237>

Summary:  <1773>

CLC number: TP391.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-04-28

Cited: 0

Clicked: 5826

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xi-chuan Zhou

http://orcid.org/0000-0002-3304-3045

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.5 P.413-421

http://doi.org/10.1631/FITEE.1500356


Global influenza surveillance with Laplacian multidimensional scaling


Author(s):  Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng

Affiliation(s):  College of Communications Engineering, Chongqing University, Chongqing 400044, China; more

Corresponding email(s):   zxc@cqu.edu.cn

Key Words:  Surveillance gap, Influenza, Spatial-transmission model


Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng. Global influenza surveillance with Laplacian multidimensional scaling[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(5): 413-421.

@article{title="Global influenza surveillance with Laplacian multidimensional scaling",
author="Xi-chuan Zhou, Fang Tang, Qin Li, Sheng-dong Hu, Guo-jun Li, Yun-jian Jia, Xin-ke Li, Yu-jie Feng",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="5",
pages="413-421",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500356"
}

%0 Journal Article
%T Global influenza surveillance with Laplacian multidimensional scaling
%A Xi-chuan Zhou
%A Fang Tang
%A Qin Li
%A Sheng-dong Hu
%A Guo-jun Li
%A Yun-jian Jia
%A Xin-ke Li
%A Yu-jie Feng
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 5
%P 413-421
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500356

TY - JOUR
T1 - Global influenza surveillance with Laplacian multidimensional scaling
A1 - Xi-chuan Zhou
A1 - Fang Tang
A1 - Qin Li
A1 - Sheng-dong Hu
A1 - Guo-jun Li
A1 - Yun-jian Jia
A1 - Xin-ke Li
A1 - Yu-jie Feng
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 5
SP - 413
EP - 421
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500356


Abstract: 
The Global influenza Surveillance Network is crucial for monitoring epidemic risk in participating countries. However, at present, the network has notable gaps in the developing world, principally in Africa and Asia where laboratory capabilities are limited. Moreover, for the last few years, various influenza viruses have been continuously emerging in the resource-limited countries, making these surveillance gaps a more imminent challenge. We present a spatial-transmission model to estimate epidemic risks in the countries where only partial or even no surveillance data are available. Motivated by the observation that countries in the same influenza transmission zone divided by the World Health Organization had similar transmission patterns, we propose to estimate the influenza epidemic risk of an unmonitored country by incorporating the surveillance data reported by countries of the same transmission zone. Experiments show that the risk estimates are highly correlated with the actual influenza morbidity trends for African and Asian countries. The proposed method may provide the much-needed capability to detect, assess, and notify potential influenza epidemics to the developing world.

This manuscript proposes a spatial transmission model based on Laplacian Multidimensional Scaling to estimate the epidemic risk in countries (or regions) with limited surveillance data. The estimate of epidemic risk in an unmonitored country (or region) is obtained by incorporating the surveillance data reported in countries (or regions) in the same zone divided by the WHO. This method is useful not only for influenza, in which data are lacking in certain countries (or regions), it could also be applied to other infectious diseases. The paper is well written.

基于多维尺度拉普拉斯分析方法的全球流感疫情监测

目的:实现全世界范围的流感疫情监测,重点是对部分WHO缺失数据的非洲国家地区的监测。
创新点:利用相同传染区传染病的传播具有相似性的特点,实现了对数据缺失的国家地区流感疫情数据的补足和预测,以及全世界范围的流感疫情监测。
方法:收集全世界范围内WHO历年来的监测数据,包括8种不同类型流感的每周感染人数。根据全世界范围内不同地区传染模式的多样性和相同地区传染模式的相似性建立模型。建立了传播相似性矩阵。根据同一传播区国家的相似性便可以得到数据缺失国家地区的流感疫情状态。
结论:针对不同流感传播区的国家地区建立了一个空间相关的流感疫情监测系统。该系统可以有效监测一些无WHO数据的非洲国家地区的疫情风险。

关键词:监测缺口;流感;空间传染模型

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Best, N., Richardson, S., Thomson, A., 2005. A comparison of Bayesian spatial models for disease mapping. Stat. Methods Med. Res., 14(1):35-59.

[2]Briand, S., Mounts, A., Chamberland, M., 2014. Challenges of Global Surveillance during an Influenza Pandemic. World Health Organization, Geneva. Available from http://www.who.int/influenza/surveillance_monitoring/Challenges_global_surveillance.pdf [Accessed on June 10, 2014].

[3]Cooper, B.S., Pitman, R.J., Edmunds, W.J., et al., 2006. Delaying the international spread of pandemic influenza. PLoS Med., 3(6):e212.

[4]ECDC, 2009. Pandemic (H1N1) 2009. European Centers for Disease Control, Stockholm. Available from http://ec.europa.eu/health/communicable_diseases/diseases/influenza/h1n1/index_en.htm [Accessed on June 10, 2014].

[5]Eubank, S., Guclu, H., Kumar, V., et al., 2004. Modelling disease outbreaks in realistic urban social networks. Nature, 429:180-184.

[6]Ferguson, N., Donnelly, C., Anderson, R., 2001. The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science, 292(5519):1155-1160.

[7]Ferguson, N., Cummings, D., Cauchemez, S., et al., 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437:209-214.

[8]Hay, S.I., Battle, K.E., Pigott, D.M., et al., 2013. Global mapping of infectious disease. Phil. Trans. R. Soc. B, 368(1614):20120250.

[9]He, D., Dushoff, J., Eftimie, R., et al., 2013. Patterns of spread of influenza A in Canada. Proc. R. Soc. B, 280(1770):20131174.

[10]He, D., Chiu, A., Lin, Q., et al., 2015a. Differences in the seasonality of Middle East respiratory syndrome coronavirus and influenza in the Middle East. Int. J. Infect. Dis., 40:15-16.

[11]He, D., Lui, R., Wang, L., et al., 2015b. Global spatio-temporal patterns of influenza in the post-pandemic era. Sci. Reports, 5:11013.

[12]Hollingsworth, T., Ferguson, N., Anderson, R., 2007. Frequent travelers and rate of spread of epidemics. Emerg. Infect. Dis., 13(9):1288-1294.

[13]Keeling, M., Woolhouse, M., Shaw, D., et al., 2001. Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science, 294(5543):813-817.

[14]Kenah, E., Chao, D., Matrajt, L., et al., 2011. The global transmission and control of influenza. PLoS ONE, 6(5):e19515.

[15]Lavanchy, D., 1999. The importance of global surveillance of influenza. Vaccine, 17:S24-S25.

[16]Longini, I., Nizam, A., Xu, S., et al., 2005. Containing pandemic influenza at the source. Science, 309(5737):1083-1087.

[17]Nelson, M.I., Viboud, C., Vincent, A.L., et al., 2015. Global migration of influenza A viruses in swine. Nat. Commun., 6:6696.

[18]Oshitani, H., Kamigaki, T., Suzuki, A., 2008. Major issues and challenges of influenza pandemic preparedness in developing countries. Emerg. Infect. Dis., 14(6):875-880.

[19]Riley, S., 2007. Large-scale spatial-transmission models of infectious disease. Science, 316(5829):1298-1301.

[20]Tamerius, J., Shaman, J., Alonso, W.J., et al., 2013. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Path., 9(3):e1003194.

[21]Wang, L., Li, X., 2014. Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull., 59(28):3511-3522.

[22]WHO, 2014. Introduction of the Influenza Transmission Zones. World Health Organization, Geneva. Available from http://www.who.int/csr/disease/swineflu/transmission_zones/en/ [Accessed on June 10, 2014].

[23]WHO Regional Office for Africa, 2009. Pandemic (H1N1) 2009 in the African Region: Update 63. World Health Organization, Brazzaville. Available from http://www.afro.who.int/index.php?option=com_docman&task=doc_download&gid=3954 [Accessed on June 10, 2014].

[24]Williams, C., 2002. On a connection between kernel PCA and metric multidimensional scaling. Mach. Learn., 46(1):11-19.

[25]Zhou, X., Shen, H., 2010. Notifiable infectious disease surveillance with data collected by search engine. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4):241-248.

[26]Zhou, X., Ye, J., Feng, Y., 2011. Tuberculosis surveillance by analyzing Google trends. IEEE Trans. Biomed. Eng., 58(8):2247-2254.

[27]Zhou, X., Li, Q., Zhu, Z., et al., 2013. Monitoring epidemic alert levels by analyzing Internet search volume. IEEE Trans. Biomed. Eng., 60(2):446-452.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE