Full Text:   <2515>

Summary:  <1866>

CLC number: TP242.6

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-05-06

Cited: 0

Clicked: 7086

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qiang Liu

http://orcid.org/0000-0003-2464-8007

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.6 P.566-575

http://doi.org/10.1631/FITEE.1500358


Subspace-based identification of discrete time-delay system


Author(s):  Qiang Liu, Jia-chen Ma

Affiliation(s):  School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; more

Corresponding email(s):   lqianghit@163.com

Key Words:  Identification problems, Time-delay systems, Subspace identification method, Alternate convex search, Least squares


Qiang Liu, Jia-chen Ma. Subspace-based identification of discrete time-delay system[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 566-575.

@article{title="Subspace-based identification of discrete time-delay system",
author="Qiang Liu, Jia-chen Ma",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="6",
pages="566-575",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500358"
}

%0 Journal Article
%T Subspace-based identification of discrete time-delay system
%A Qiang Liu
%A Jia-chen Ma
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 6
%P 566-575
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500358

TY - JOUR
T1 - Subspace-based identification of discrete time-delay system
A1 - Qiang Liu
A1 - Jia-chen Ma
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 6
SP - 566
EP - 575
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500358


Abstract: 
We investigate the identification problems of a class of linear stochastic time-delay systems with unknown delayed states in this study. A time-delay system is expressed as a delay differential equation with a single delay in the state vector. We first derive an equivalent linear time-invariant (LTI) system for the time-delay system using a state augmentation technique. Then a conventional subspace identification method is used to estimate augmented system matrices and Kalman state sequences up to a similarity transformation. To obtain a state-space model for the time-delay system, an alternate convex search (ACS) algorithm is presented to find a similarity transformation that takes the identified augmented system back to a form so that the time-delay system can be recovered. Finally, we reconstruct the Kalman state sequences based on the similarity transformation. The time-delay system matrices under the same state-space basis can be recovered from the Kalman state sequences and input-output data by solving two least squares problems. Numerical examples are to show the effectiveness of the proposed method.

This paper is concerned with the identification problems for a class of linear stochastic time-delay systems with unknown delayed states. The time-delay system is expressed as a delay differential equation with a single delay in state vector and conventional subspace identification method is utilized to estimate the augmented system matrices. The time-delay system matrices, under the same state space basis, are recovered from the Kalman state sequences and input-output data. Finally, authors validated their theoretical results by providing numerical examples.

基于子空间的离散时滞系统辨识

目的:时滞存在于很多系统中,时滞会导致系统性能下降并使系统变得不稳定。因此研究具有未知时滞的线性辨识对于系统分析和控制设计有着很重要的作用。本文提出了一种ACS算法,用来解决具有单一时延的离散随机时滞系统的辨识。
创新点:提出一种ACS算法,将时滞系统矩阵从估计的增广矩阵中重新恢复出来。采用状态增广方法将时滞系统与等价的线性时不变系统联系起来,利用N4SID算法对增广系统矩阵进行初始估计。
方法:时滞系统被表达为具有单一时延的时滞差分方程。首先利用状态增广方法将线性时滞系统转化为一个等价的线性时不变系统。然后利用子空间辨识方法对增广系统矩阵进行初始估计,提出了一种ACS算法,得到了线性时滞系统的状态空间模型。最后通过解决两个最小二乘法问题,利用卡尔曼状态序列和输入输出数据得到相同状态空间下的时滞系统矩阵。
结论:本文提出的ACS算法可以利用估计的增广矩阵得出时滞系统矩阵,解决了线性离散时滞系统的辨识问题,同时证明了该算法具有良好的局部收敛性能。仿真结果表明了这种算法的有效性。

关键词:辨识问题;时滞系统;子空间辨识方法;ACS算法;最小二乘法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bayrak, A., Tatlicioglu, E., 2016. A novel online adaptive time delay identification technique. Int. J. Syst. Sci., 47(7):1574-1585.

[2]Belkoura, L., Orlov, Y., 2002. Identifiability analysis of linear delay-differential systems. IMA J. Math. Contr. Inform., 19(1-2):73-81.

[3]Ding, S.X., Zhang, P., Naik, A., et al., 2009. Subspace method aided data-driven design of fault detection and isolation systems. J. Process Contr., 19(9):1496-1510.

[4]Drakunov, S.V., Perruquetti, W., Richard, J.P., et al., 2006. Delay identification in time-delay systems using variable structure observers. Ann. Rev. Contr., 30(2):143-158.

[5]Gao, H., Chen, T., 2007. New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Autom. Contr., 52(2):328-334.

[6]Gorski, J., Pfeuffer, F., Klamroth, K., 2007. Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res., 66(3):373-407.

[7]Hachicha, S., Kharrat, M., Chaari, A., 2014. N4SID and MOESP algorithms to highlight the ill-conditioning into subspace identification. Int. J. Autom. Comput., 11(1):30-38.

[8]Huang, B., Kadali, R., 2008. Dynamic Modeling, Predictive Control and Performance Monitoring: a Data-Driven Subspace Approach. Springer, London, UK.

[9]Huang, B., Ding, S.X., Qin, S.J., 2005. Closed-loop subspace identification: an orthogonal projection approach. J. Process Contr., 15(1):53-66.

[10]Kailath, T., 1980. Linear Systems. Prentice-Hall, New Jersey, USA.

[11]Kolmanovskii, V., Myshkis, A., 1999. Introduction to the Theory and Applications of Functional Differential Equations. Springer, the Netherlands.

[12]Kudva, P., Narendra, K.S., 1973. An Identification Procedure for Discrete Multivariable Systems. Technical Report No. AD0768992, Yale University, USA.

[13]Lima, R.B.C., Barros, P.R., 2015. Identification of time-delay systems: a state-space realization approach. Proc. 9th IFAC Symp. on Advanced Control of Chemical Processes, p.254-259.

[14]Ljung, L., 1987. System Identification: Theory for the User. PTR Prentice Hall, New Jersey, USA.

[15]Lunel, S.M.V., 2001. Parameter identifiability of differential delay equations. Int. J. Adapt. Contr. Signal Process., 15(6):655-678.

[16]Lyzell, C., Enqvist, M., Ljung, L., 2009. Handling Certain Structure Information in Subspace Identification. Report, Linköping University Electronic Press, Sweden.

[17]Nakagiri, S., Yamamoto, M., 1995. Unique identification of coefficient matrices, time delays and initial functions of functional differential equations. J. Math. Syst. Estimat. Contr., 5(3):323-344.

[18]Niculescu, S.I., 2001. Delay Effects on Stability: a Robust Control Approach. Springer-Verlag, London, UK.

[19]Orlov, Y., Belkoura, L., Richard, J.P., et al., 2002. On identifiability of linear time-delay systems. IEEE Trans. Autom. Contr., 47(8):1319-1324.

[20]Orlov, Y., Belkoura, L., Richard, J.P., et al., 2003. Adaptive identification of linear time-delay systems. Int. J. Robust Nonl. Contr., 13(9):857-872.

[21]Park, J.H., Han, S., Kwon, B., 2013. On-line model parameter estimations for time-delay systems. IEICE Trans. Inform. Syst., 96(8):1867-1870.

[22]Pourboghrat, F., Chyung, D.H., 1989. Parameter identification of linear delay systems. Int. J. Contr., 49(2):595-627.

[23]Prot, O., Mercère, G., 2011. Initialization of gradient-based optimization algorithms for the identification of structured state-space models. Proc. 18th IFAC World Congress, p.10782-10787.

[24]Qin, P., Kanae, S., Yang, Z.J., et al., 2007. Identification of lifted models for general dual-rate sampled-data systems based on input-output data. Proc. Asian Modelling and Simulation, p.7-12.

[25]Qin, S.J., 2006. An overview of subspace identification. Comput. Chem. Eng., 30(10-12):1502-1513.

[26]Richard, J.P., 2003. Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10):1667-1694.

[27]Wang, J., Qin, S.J., 2006. Closed-loop subspace identification using the parity space. Automatica, 42(2):315-320.

[28]Xie, L., Ljung, L., 2002. Estimate physical parameters by black box modeling. Proc. 21st Chinese Control Conf., p.673-677.

[29]Yang, X., Gao, H., 2014. Multiple model approach to linear parameter varying time-delay system identification with EM algorithm. J. Franklin Inst., 351(12):5565-5581.

[30]Yang, X., Lu, Y., Yan, Z., 2015. Robust global identification of linear parameter varying systems with generalised expectation-maximisation algorithm. IET Contr. Theory Appl., 9(7):1103-1110.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE