CLC number: TP391.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-04-13
Cited: 0
Clicked: 7685
Zhao-yun Chen, Lei Luo, Da-fei Huang, Mei Wen, Chun-yuan Zhang. Exploiting a depth context model in visual tracking with correlation filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 667-679.
@article{title="Exploiting a depth context model in visual tracking with correlation filter",
author="Zhao-yun Chen, Lei Luo, Da-fei Huang, Mei Wen, Chun-yuan Zhang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="5",
pages="667-679",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500389"
}
%0 Journal Article
%T Exploiting a depth context model in visual tracking with correlation filter
%A Zhao-yun Chen
%A Lei Luo
%A Da-fei Huang
%A Mei Wen
%A Chun-yuan Zhang
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 5
%P 667-679
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500389
TY - JOUR
T1 - Exploiting a depth context model in visual tracking with correlation filter
A1 - Zhao-yun Chen
A1 - Lei Luo
A1 - Da-fei Huang
A1 - Mei Wen
A1 - Chun-yuan Zhang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 5
SP - 667
EP - 679
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500389
Abstract: Recently correlation filter based trackers have attracted considerable attention for their high computational efficiency. However, they cannot handle occlusion and scale variation well enough. This paper aims at preventing the tracker from failure in these two situations by integrating the depth information into a correlation filter based tracker. By using RGB-D data, we construct a depth context model to reveal the spatial correlation between the target and its surrounding regions. Furthermore, we adopt a region growing method to make our tracker robust to occlusion and scale variation. Additional optimizations such as a model updating scheme are applied to improve the performance for longer video sequences. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed tracker performs favourably against state-of-the-art algorithms.
[1]Adam, A., Rivlin, E., Shimshoni, I., 2006. Robust fragments-based tracking using the integral histogram. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.798-805.
[2]Adams, R., Bischof, L., 1994. Seeded region growing. IEEE Trans. Patt. Anal. Mach. Intell., 16(6):641-647.
[3]Bolme, D.S., Beveridge, J.R., Draper, B.A., et al., 2010. Visual object tracking using adaptive correlation filters. IEEE Conf. on Computer Vision and Pattern Recognition, p.2544-2550.
[4]Cehovin, L., Kristan, M., Leonardis, A., 2011. An adaptive coupled-layer visual model for robust visual tracking. IEEE Int. Conf. on Computer Vision, p.1363-1370.
[5]Chen, K., Lai, Y., Wu, Y., et al., 2014. Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information. ACM Trans. Graph., 33(6):208-219.
[6]Choi, C., Christensen, H.I., 2013. RGB-D object tracking: a particle filter approach on GPU. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1084-1091.
[7]Danelljan, M., Häger, G., Khan, F.S., et al., 2014a. Accurate scale estimation for robust visual tracking. British Machine Vision Conf., p.1-11.
[8]Danelljan, M., Khan, F.S., Felsberg, M., et al., 2014b. Adaptive color attributes for real-time visual tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.1090-1097.
[9]Dinh, T.B., Vo, N., Medioni, G.G., 2011. Context tracker: exploring supporters and distracters in unconstrained environments. IEEE Conf. on Computer Vision and Pattern Recognition, p.1177-1184.
[10]Everingham, M., Gool, L.V., Williams, C.K., et al., 2010. The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vis., 88(2):303-338.
[11]Grabner, H., Matas, J., Gool, L.V., et al., 2010. Tracking the invisible: learning where the object might be. IEEE Conf. on Computer Vision and Pattern Recognition, p.1285-1292.
[12]Gupta, S., Girshick, R.B., Arbelaez, P., et al., 2014. Learning rich features from RGB-D images for object detection and segmentation. ECCV, p.345-360.
[13]Hare, S., Saffari, A., Torr, P., et al., 2011. Struck: structured output tracking with kernels. IEEE Trans. Patt. Anal. Mach. Intell., 38(10):263-270.
[14]Henriques, J.F., Caseiro, R., Martins, P., et al., 2012. Exploiting the circulant structure of tracking-by-detection with kernels. ECCV, p.702-715.
[15]Henriques, J.F., Caseiro, R., Martins, P., et al., 2015. High-speed tracking with kernelized correlation filters. IEEE Trans. Patt. Anal. Mach. Intell., 37(3):583-596.
[16]Hickson, S., Birchfield, S., Essa, I.A., et al., 2014. Efficient hierarchical graph-based segmentation of RGBD videos. IEEE Conf. on Computer Vision and Pattern Recognition, p.344-351.
[17]Izadinia, H., Saleemi, I., Li, W., et al., 2012. (MP) 2T: multiple people multiple parts tracker. IEEE Conf. on Computer Vision and Pattern Recognition, p.100-114.
[18]Kalal, Z., Mikolajczyk, K., Matas, J., 2012. Tracking-learning-detection. IEEE Trans. Patt. Anal. Mach. Intell., 34(7):1409-1422.
[19]Kristan, M., Pflugfelder, R., Leonardis, A., et al., 2015. The visual object tracking VOT2014 challenge results. IEEE Conf. on Computer Vision and Pattern Recognition, p.191-217.
[20]Kumar, B.V., Mahalanobis, A., Juday, R.D., 2010. Correlation Pattern Recognition. Cambridge University Press, Cambridge.
[21]Lee, D., Sim, J., Kim, C., 2014. Visual tracking using pertinent patch selection and masking. IEEE Conf. on Computer Vision and Pattern Recognition, p.3486-3493.
[22]Li, X., Hu, W., Shen, C., et al., 2013. A survey of appearance models in visual object tracking. ACM Intell. Syst. Technol., 4(4):58.
[23]Li, Y., Zhu, J., 2014. A scale adaptive kernel correlation filter tracker with feature integration. ECCV, p.254-265.
[24]Li, Y., Zhu, J., Hoi, S., et al., 2015. Reliable patch trackers: robust visual tracking by exploiting reliable patches. IEEE Conf. on Computer Vision and Pattern Recognition, p.353-361.
[25]Liu, T., Wang, G., Yang, Q., 2015. Real-time part-based visual tracking via adaptive correlation filters. IEEE Conf. on Computer Vision and Pattern Recognition, p.4902-4912.
[26]Luber, M., Spinello, L., Arras, K.O., 2011. People tracking in RGB-D data with on-line boosted target models. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3844-3849.
[27]Ma, C., Yang, X., Zhang, C., et al., 2015. Long-term correlation tracking. IEEE Conf. on Computer Vision and Pattern Recognition, p.5388-5396.
[28]Park, Y., Lepetit, V., Woo, W., 2011. Texture-less object tracking with online training using an RGB-D camera. 10th IEEE Int. Symp. on Mixed and Augmented Reality, p.121-126.
[29]Ross, D.A., Lim, J., Lin, R.S., et al., 2008. Incremental learning for robust visual tracking. Int. J. Comput. Vis., 77(1-3):125-141.
[30]Shu, G., Dehghan, A., Oreifej, O., et al., 2012. Part-based multiple-person tracking with partial occlusion handling. IEEE Conf. on Computer Vision and Pattern Recognition, p.1815-1821.
[31]Smeulders, A.W., Chu, D., Cucchiara, R., et al., 2014. Visual tracking: an experimental survey. IEEE Trans. Patt. Anal. Mach. Intell., 36(7):1442-1468.
[32]Song, S., Xiao, J., 2013. Tracking revisited using RGBD camera: unified benchmark and baselines. IEEE Int. Conf. on Computer Vision, p.233-240.
[33]Teichman, A., Lussier, J.T., Thrun, S., 2013. Learning to segment and track in RGBD. IEEE Trans. Autom. Sci. Eng., 10(4):841-852.
[34]Wu, Y., Lim, J., Yang, M., 2013. Online object tracking: a benchmark. IEEE Conf. on Computer Vision and Pattern Recognition, p.2411-2418.
[35]Yang, B., Nevatia, R., 2012. Online learned discriminative part-based appearance models for multi-human tracking. ECCV, p.484-498.
[36]Yang, H., Shao, L., Zheng, F., et al., 2011. Recent advances and trends in visual tracking: a review. Neurocomputing, 74(18):3823-3831.
[37]Yang, M., Wu, Y., Hua, G., 2009. Context-aware visual tracking. IEEE Trans. Patt. Anal. Mach. Intell., 31(7):1195-1209.
[38]Yilmaz, A., Javed, O., Shah, M., 2006. Object tracking: a survey. ACM Comput. Surv., 38(4):13.
[39]Zhang, L., Maaten, L., 2014. Preserving structure in model-free tracking. IEEE Trans. Patt. Anal. Mach. Intell., 36(4):756-769.
[40]Zhang, K., Zhang, L., Liu, Q., et al., 2014. Fast visual tracking via dense spatio-temporal context learning. ECCV, p.127-141.
Open peer comments: Debate/Discuss/Question/Opinion
<1>