CLC number: TN385
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-08-06
Cited: 0
Clicked: 5985
Ying-hui Zhong, Shu-xiang Sun, Wen-bin Wong, Hai-li Wang, Xiao-ming Liu, Zhi-yong Duan, Peng Ding, Zhi Jin. Two-step gate-recess process combining selective wet-etching and digital wet-etching for InAlAs/InGaAs InP-based HEMTs[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(8): 1180-1185.
@article{title="Two-step gate-recess process combining selective wet-etching and digital wet-etching for InAlAs/InGaAs InP-based HEMTs",
author="Ying-hui Zhong, Shu-xiang Sun, Wen-bin Wong, Hai-li Wang, Xiao-ming Liu, Zhi-yong Duan, Peng Ding, Zhi Jin",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="8",
pages="1180-1185",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601121"
}
%0 Journal Article
%T Two-step gate-recess process combining selective wet-etching and digital wet-etching for InAlAs/InGaAs InP-based HEMTs
%A Ying-hui Zhong
%A Shu-xiang Sun
%A Wen-bin Wong
%A Hai-li Wang
%A Xiao-ming Liu
%A Zhi-yong Duan
%A Peng Ding
%A Zhi Jin
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 8
%P 1180-1185
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601121
TY - JOUR
T1 - Two-step gate-recess process combining selective wet-etching and digital wet-etching for InAlAs/InGaAs InP-based HEMTs
A1 - Ying-hui Zhong
A1 - Shu-xiang Sun
A1 - Wen-bin Wong
A1 - Hai-li Wang
A1 - Xiao-ming Liu
A1 - Zhi-yong Duan
A1 - Peng Ding
A1 - Zhi Jin
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 8
SP - 1180
EP - 1185
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601121
Abstract: A two-step gate-recess process combining high selective wet-etching and non-selective digital wet-etching techniques has been proposed for InAlAs/InGaAs InP-based high electron mobility transistors (HEMTs). High etching-selectivity ratio of InGaAs to InAlAs material larger than 100 is achieved by using mixture solution of succinic acid and hydrogen peroxide (H2O2). selective wet-etching is validated in the gate-recess process of InAlAs/InGaAs InP-based HEMTs, which proceeds and automatically stops at the InAlAs barrier layer. The non-selective digital wet-etching process is developed using a separately controlled oxidation/de-oxidation technique, and during each digital etching cycle 1.2 nm InAlAs material is removed. The two-step gate-recess etching technique has been successfully incorporated into device fabrication. digital wet-etching is repeated for two cycles with about 3 nm InAlAs barrier layer being etched off. InP-based HEMTs have demonstrated superior extrinsic transconductance and RF characteristics to devices fabricated during only the selective gate-recess etching process because of the smaller gate to channel distance.
[1]Cao, X., Thoms, S., Macintyre, D., et al., 2004. Fabrication and performance of 50 nm T-gates for InP high electron mobility transistors. Microelectron. Eng., 73-74:818-821.
[2]Deal, W.R., Mei, X.B., Leong, K., et al., 2011a. THz monolithic integrated circuits using InP high electron mobility transistors. IEEE Trans. Terah. Sci. Technol., 1(1):25-32.
[3]Deal, W.R., Leong, K., Radisic, V., et al., 2011b. Low noise amplification at 0.67 THz using 30 nm InP HEMTs. IEEE Microw. Wirel. Compon. Lett., 21(7):368-370.
[4]Deal, W.R., Leong, K., Zamora, A., et al., 2014. Recent progress in scaling InP HEMT TMIC technology to 850 GHz. IEEE MTT-S Int. Microwave Symp., p.1-3.
[5]Leong, K., Mei, X.B., Yoshida, W., et al., 2015. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microw. Wirel. Compon. Lett., 25(6):397-399.
[6]Mei, X.B., Yoshida, W., Lange, M., et al., 2015. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process. IEEE Electr. Dev. Lett., 36(4):327-329.
[7]Reck, T., Zemora, A., Schlecht, E., et al., 2016. A 230 GHz MMIC-based sideband separating receiver. IEEE Trans. Terah. Sci. Technol., 6(1):141-147.
[8]Rodwell, M.J.W., 2014. 50-500 GHz wireless: transistors, ICs, and system design. German Microwave Conf., p.1-4.
[9]Varonen, M., Reeves, R., Kangaslahti, P., et al., 2016. An MMIC low-noise amplifier design technique. IEEE Trans. Microw. Theory Techn., 64(3):826-835.
[10]Zhong, Y.H., Wang, X.T., Su, Y.B., et al., 2012a. Impact of the lateral width of the gate recess on the DC and RF characteristics of InAlAs/InGaAs HEMTs. J. Semicond., 33(5):61-65.
[11]Zhong, Y.H., Wang, X.T., Su, Y.B., et al., 2012b. An 88 nm gate-length In0.53Ga0.47As/In0.52Al0.48As InP-based HEMT with fmax of 201 GHz. J. Semicond., 33(7):39-42.
[12]Zhong, Y.H., Li, K.K., Li, X.J., et al., 2015. A W-band high-gain and low-noise amplifier MMIC using InP-based HEMTs. J Infrar. Millim. Waves, 34(6):668-672 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>