CLC number: TM351
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-10-29
Cited: 0
Clicked: 6671
Jawad Aslam, Xing-hu Li, Faira Kanwal Janjua. Design of a hybrid magneto motive force electromechanical valve actuator[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(10): 1635-1643.
@article{title="Design of a hybrid magneto motive force electromechanical valve actuator",
author="Jawad Aslam, Xing-hu Li, Faira Kanwal Janjua",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="10",
pages="1635-1643",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601215"
}
%0 Journal Article
%T Design of a hybrid magneto motive force electromechanical valve actuator
%A Jawad Aslam
%A Xing-hu Li
%A Faira Kanwal Janjua
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 10
%P 1635-1643
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601215
TY - JOUR
T1 - Design of a hybrid magneto motive force electromechanical valve actuator
A1 - Jawad Aslam
A1 - Xing-hu Li
A1 - Faira Kanwal Janjua
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 10
SP - 1635
EP - 1643
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601215
Abstract: We propose a novel axis-symmetric modified hybrid permanent magnet (PM)/electromagnet (EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N (in the presence of coil current) at the equilibrium position and 500 N (in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator (DSVA). The finite element method (FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.
[1]Albert, J., Banucu, R., Hafla, W., et al., 2009. Simulation based development of a valve actuator for alternative drives using BEM-FEM code. IEEE Trans. Magn., 45(3): 1744-1747.
[2]Chladny, R.R., Koch, C.R., Lynch, A.F., 2005. Modeling automotive gas-exchange solenoid valve actuators. IEEE Trans. Magn., 41(3):1155-1162.
[3]Clark, R.E., Jewell, G.W., Forrest, S.J., et al., 2005. Design features for enhancing the performance of electromagnetic valve actuation systems. IEEE Trans. Magn., 41(3): 1163-1168. http://doi.org/10.1109/TMAG.2004.843342
[4]Cope, D., Wright, A., 2006. Electromagnetic Fully Flexible Valve Actuator. SAE Technical Paper No. 2006-01-0044.
[5]Fabbrini, A., Garolli, A., Mercorelli, P., 2012. A trajectory generation algorithm for optimal consumption in electromagnetic actuators. IEEE Trans. Contr. Syst. Techn., 20(4):1025-1032.
[6]Gillela, P.K., Song, X., Cun, Z., 2014. Time varying internal model based control of a camless engine valve actuation system. IEEE Trans. Contr. Syst. Techn., 22(4):1498-1510.
[7]Hara, S., Suga, S., Wanatabe, S., et al., 2009. Variable valve actuation systems for environmental friendly engines. Hitachi Rev., 58(7):319-324.
[8]Kim, J., Chang, J., 2006. A new electromagnetic linear actuator for quick latching. 12th Biennial IEEE Conf. on Electromagnetic Field Computation, p.70.
[9]Kim, J., Lieu, D.K., 2005. Designs for a new, quick-response, latching electromagnetic valve. IEEE Int. Conf. on Electric Machines and Drives, p.1773-1779.
[10]Kim, J., Lieu, D.K., 2007. A new electromagentic valve actuator with less energy consumption for variable valve timing. J. Mech. Sci. Eng., 21(4):602-606.
[11]Kim, J., Chang, J.H., Park, S.M., et al., 2010. A novel electromagnetic latching device for variable valve timing in automotive engine. 14th Biennial IEEE Conf. on Electromagnetics Field Computation, p.1.
[12]Liu, J.J., Lu, P.H., Yang, Y.P., et al., 2011. Energy compensation for soft landing control in camless engine with electromagnetic valve actuator. Int. Conf. on Electrical Machines and Systems, p.1-6.
[13]Liu, L., Chang, S., 2011a. Improvement of valve seating performance of engine’s electromagnetic valve train. Mechatronics, 21(7):1234-1238.
[14]Liu, L., Chang, S., 2011b. Motion control of an electromagnetic valve actuator based on inverse system method. Proc. IMECHE Part D: J. Autom. Eng., 226(1):85-93.
[15]Mercorelli, P., 2012a. A hysteresis hybrid extended Kalman filter as an observer for sensorless valve control in camless internal combustion engines. IEEE Trans. Ind. Appl., 48(6):1940-1949.
[16]Mercorelli, P., 2012b. A two stage augmented extended Kalman filter as an observer for sensorless control in camless external combustion engines. IEEE Trans. Ind. Electron., 59(11):4236-4247.
[17]Mercorelli, P., 2015. A two stage sliding mode high gain observer to reduce uncertainties and disturbances effects for sensorless control in automotive applications. IEEE Trans. Ind. Electron., 62(9):5929-5940.
[18]Mercorelli, P., Werner, N., Becker, U., et al., 2012. A hybrid hydraulic piezo actuator and its control for camless internal combustion engines. 7th Int. Conf. on Integerated Power Electronics Systems, p.1-6.
[19]Rens, J., Richard, E.C., Geraint, W.J., 2006. Static performance of a polarized permanent-magnet reluctance actuator for internal combustion engine valve actuation. IEEE Trans. Magn., 42(8):2063-2070.
[20]Sellnau, M., Rask, E., 2003. Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance. SAE Technical Paper No. 2003-01-0029.
[21]Shiao, Y., Dat, L.V., 2013. A new electromagnetic valve train with PM/EM actuator in SI engines. Trans. Can. Soc. Mech. Eng., 37(3):787-796.
[22]Vu, D.T., Pyung, H., 2013. A novel of hybrid magnet engine valve actuator using shorted turn for fast initial response. Int. J. Inform. Electron. Eng., 3(3):250-253.
[23]Yang, Y.P., Liu, J.J., Lu, P.H., et al., 2011. Multifunctional optimal design of an electromagnetic valve actuator with hybrid magnetomotive force for a camless engine. Int. Conf. on Electrical Machines and Systems, p.1-6.
Open peer comments: Debate/Discuss/Question/Opinion
<1>