CLC number: TN491; E963
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2017-09-30
Cited: 1
Clicked: 6421
Wei Cai, Bing-cheng Zhu, Xu-min Gao, Yong-chao Yang, Jia-lei Yuan, Gui-xia Zhu, Yong-jin Wang, Peter GRNBERG. On-chip optical interconnect using visible light[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1288-1294.
@article{title="On-chip optical interconnect using visible light",
author="Wei Cai, Bing-cheng Zhu, Xu-min Gao, Yong-chao Yang, Jia-lei Yuan, Gui-xia Zhu, Yong-jin Wang, Peter GRNBERG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="9",
pages="1288-1294",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601720"
}
%0 Journal Article
%T On-chip optical interconnect using visible light
%A Wei Cai
%A Bing-cheng Zhu
%A Xu-min Gao
%A Yong-chao Yang
%A Jia-lei Yuan
%A Gui-xia Zhu
%A Yong-jin Wang
%A Peter GRNBERG
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 9
%P 1288-1294
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601720
TY - JOUR
T1 - On-chip optical interconnect using visible light
A1 - Wei Cai
A1 - Bing-cheng Zhu
A1 - Xu-min Gao
A1 - Yong-chao Yang
A1 - Jia-lei Yuan
A1 - Gui-xia Zhu
A1 - Yong-jin Wang
A1 - Peter GRNBERG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 9
SP - 1288
EP - 1294
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601720
Abstract: We propose and fabricate a monolithic optical interconnect on a GaN-on-silicon platform using a wafer-level technique. Because the InGaN/GaN multiple-quantum-well diodes (MQWDs) can achieve light emission and detection simultaneously, the emitter and collector sharing identical MQW structure are produced using the same process. Suspended waveguides interconnect the emitter with the collector to form in-plane light coupling. Monolithic optical interconnect chip integrates the emitter, waveguide, base, and collector into a multi-component system with a common base. Output states superposition and 1×2 in-plane light communication are experimentally demonstrated. The proposed monolithic optical interconnect opens a promising way toward the diverse applications from in-plane visible light communication to light-induced artificial synaptic devices, intelligent display, on-chip imaging, and optical sensing.
[1]Bai, D., Wu, T., Li, X., et al., 2016. Suspended GaN-based nanostructure for integrated optics. Appl. Phys. B, 122(1):1-7.
[2]Brubaker, M.D., Blanchard, P.T., Schlager, J.B., et al., 2013. On-chip optical interconnects made with gallium nitride nanowires. Nano Lett., 13(2):374-377.
[3]Cai, W., Gao, X., Yuan, W., et al., 2016a. Integrated mboxp-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities. Appl. Phys. Expr., 9(5):052204.
[4]Cai, W., Yang, Y., Gao, X., et al., 2016b. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities. Opt. Expr., 24(6): 6004-6010.
[5]Cao, X., Yue, T., Lin, X., et al., 2016. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Process. Mag., 33(5): 95-108.
[6]Chen, R., Tran, T.T.D., Ng, K.W., et al., 2011. Nanolasers grown on silicon. Nat. Photon., 5(3):170-175.
[7]Dai, Q., 2017. Functional imaging of one million neurons at synaptic resolution simultaneously with a novel video-rate, sub-gigapixel microscopy at centimeter scale field-of-view, sub-micron resolution. CSH Asia Conf. on Primate Neuroscience: Perception, Cognition and Disease Models, in press.
[8]Feng, M., Holonyak, N.Jr, Hafez, W., 2004. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett., 84(1): 151-153.
[9]Jhou, Y., Chen, C.H., Chuang, R.W.K., et al., 2005. Nitride-based light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures. Solid-State Electron., 49(8):1347-1351.
[10]Jiang, Z., Atalla, M.R., You, G., et al., 2014. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. Opt. Lett., 39(19):5657-5660.
[11]Krost, A., Dadgar, A., 2002. GaN-based optoelectronics on silicon substrates. Mat. Sci. Eng. B, 93(1):77-84.
[12]Kuykendall, T., Ulrich, P., Aloni, S., et al., 2007. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater., 6(12):951-956.
[13]Li, X., Shi, Z., Zhu, G., et al., 2014. High efficiency membrane light emitting diode fabricated by back wafer thinning technique. Appl. Phys. Lett., 105(3):2211-2213.
[14]Li, X., Zhu, G., Gao, X., et al., 2015. Suspended p-n junction InGaN/GaN multiple-quantum-well device with selectable functionality. IEEE Photon. J., 7(6):1-7.
[15]Liao, C.L., Ho, C.L., Chang, Y.F., et al., 2014. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Dev. Lett., 35(5):563-565.
[16]McKendry, J.J., Massoubre, D., Zhang, S., et al., 2012. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightw. Technol., 30(1):61-67.
[17]Noda, S., Fujita, M., 2009. Light-emitting diodes: photonic crystal efficiency boost. Nat. Photon., 3(3):129-130.
[18]Qian, F., Li, Y., Gradevĉak, S., et al., 2008. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater., 7(9):701-706.
[19]Sato, T., Takeda, K., Shinya, A., et al., 2015. Photonic crystal lasers for chip-to-chip and on-chip optical interconnects. IEEE J. Sel. Top. Quant. Electron., 21(6):728-737.
[20]Schubert, E.F., Gessmann, T., Kim, J.K., 2005. Light Emitting Diodes. John Wiley & Sons, Inc.
[21]Sekiya, T., Sasaki, T., Hane, K., 2015. Design, fabrication, and optical characteristics of freestanding GaN wave-guides on silicon substrate. J. Vac. Sci. Technol. B, 33(3):031207.
[22]Shokhovets, S., Himmerlich, M., Kirste, L., et al., 2015. Birefringence and refractive indices of wurtzite GaN in the transparency range. Appl. Phys. Lett., 107(9):092104.
[23]Sun, C., Wade, M.T., Lee, Y., et al., 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534-538.
[24]Tchernycheva, M., Messanvi, A., de Luna Bugallo, A., et al., 2014. Integrated photonic platform based on InGaN/ GaN nanowire emitters and detectors. Nano Lett., 14(6):3515-3520.
[25]Triviño, N.V., Butte, R., Carlin, J.F., et al., 2015. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett., 15(2):1259-1263.
[26]van Zeghbroeck, B., Harder, C., Meier, H.P., et al., 1989. Photon transport transistor. Int. Technical Digest on Electron Devices Meeting, p.543-546.
[27]et al.Vuvĉić, J., Kottke, C., Nerreter, S., et al., 2010. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightw. Technol., 28(24):3512-3518.
[28]Wang, Y., Zhu, G., Cai, W., et al., 2016. On-chip photonic system using suspended pn junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett., 108(16):162102.
[29]Wierer, J.J., David, A., Megens, M.M., 2009. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon., 3(3):163-169.
[30]Yang, Y., Zhu, B., Shi, Z., et al., 2017. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Matt., 66:659-663.
[31]Yuan, J., Cai, W., Gao, X., et al., 2016. Monolithic integration of a suspended light-emitting diode with a Y-branch structure. Appl. Phys. Expr., 9(3):032202.
[32]Zhang, Y., Oka, T., Suzuki, R., et al., 2014. Electrically switchable chiral light-emitting transistor. Science, 344(6185):725-728.
Open peer comments: Debate/Discuss/Question/Opinion
<1>