Full Text:   <2984>

Summary:  <1526>

CLC number: O232; V412.4

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2018-11-27

Cited: 0

Clicked: 6231

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Li Xie

http://orcid.org/0000-0002-5214-9769

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2018 Vol.19 No.11 P.1444-1458

http://doi.org/10.1631/FITEE.1800295


Hohmann transfer via constrained optimization


Author(s):  Li Xie, Yi-qun Zhang, Jun-yan Xu

Affiliation(s):  State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China; more

Corresponding email(s):   lixie@ncepu.edu.cn, yiqunzhang@hotmail.com, junyan_Xu@sina.cn

Key Words:  Hohmann transfer, Nonlinear programming, Constrained optimization, Calculus of variations


Share this article to: More <<< Previous Article|

Li Xie, Yi-qun Zhang, Jun-yan Xu. Hohmann transfer via constrained optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(11): 1444-1458.

@article{title="Hohmann transfer via constrained optimization",
author="Li Xie, Yi-qun Zhang, Jun-yan Xu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="19",
number="11",
pages="1444-1458",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1800295"
}

%0 Journal Article
%T Hohmann transfer via constrained optimization
%A Li Xie
%A Yi-qun Zhang
%A Jun-yan Xu
%J Frontiers of Information Technology & Electronic Engineering
%V 19
%N 11
%P 1444-1458
%@ 2095-9184
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1800295

TY - JOUR
T1 - Hohmann transfer via constrained optimization
A1 - Li Xie
A1 - Yi-qun Zhang
A1 - Jun-yan Xu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 19
IS - 11
SP - 1444
EP - 1458
%@ 2095-9184
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1800295


Abstract: 
Inspired by the geometric method proposed by Jean-Pierre MAREC, we first consider the hohmann transfer problem between two coplanar circular orbits as a static nonlinear programming problem with an inequality constraint. By the Kuhn-Tucker theorem and a second-order sufficient condition for minima, we analytically prove the global minimum of the hohmann transfer. Two sets of feasible solutions are found: one corresponding to the hohmann transfer is the global minimum and the other is a local minimum. We next formulate the hohmann transfer problem as boundary value problems, which are solved by the calculus of variations. The two sets of feasible solutions are also found by numerical examples. Via static and dynamic constrained optimizations, the solution to the hohmann transfer problem is re-discovered, and its global minimum is analytically verified using nonlinear programming.

约束优化下的霍曼转移

摘要:在Jean-Pierre MAREC几何方法启发下,将两共面圆轨道之间的霍曼转移问题定义为一个不等式约束下的静态非线性规划问题。利用Kuhn-Tucker定理和最小值点存在的一个二阶充分条件,证明霍曼转移的全局最小性。该约束优化问题存在两组可行解,其中对应于霍曼转移的一个解是全局极小值点,另一个解是局部极小值点。随后将霍曼转移问题考虑为有约束的动态优化问题,并用变分法转化为边值问题求解。在静态和动态优化数值算例中验证了静态优化解析给出的两组可行解。由静态和动态约束优化,我们重新发现霍曼转移问题的解,并用非线性规划解析证明了其全局最小性。

关键词:霍曼转移;非线性规划;约束优化;变分法

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Avendaño M, Martín-Molina V, Martín-Morales J, et al., 2016. Algebraic approach to the minimum-cost multi-impulse orbit-transfer problem. J Guid Contr Dynam, 39(8):1734-1743.

[2]Avriel M, 2003. Nonlinear Programming: Analysis and Methods. Dover Publications Inc., Mineola, NY, USA.

[3]Barrar RB, 1963. An analytic proof that the Hohmann type transfer is the true minimum two-impulse transfer. Acta Astronaut, 9(1):1-11.

[4]Battin RH, 1987. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York, USA.

[5]Bertsekas DP, 1999. Nonlinear Programming (2nd Ed.). Athena Scientific, Belmont, Egypt.

[6]Bryson AEJr, Ho YC, 1975. Applied Optimal Control. Hemisphere Publishing Corp., Washington, USA.

[7]Cornelisse JW, Schöyer HFR, Wakker KF, 1979. Rocket Propulsion and Spaceflight Dynamics. Pitman, London, UK.

[8]Curtis HD, 2014. Orbital Mechanics for Engineering Students. Elsevier, Amsterdam, the Netherlands.

[9]Guler O, 2010. Foundations of Optimization. Springer, New York, USA.

[10]Gurfil P, Seidelmann PK, 2016. Celestial Mechanics and Astrodynamics: Theory and Practice. Springer Berlin Heidelberg, Germany.

[11]Hazelrigg GA, 1984. Globally optimal impulsive transfers via Green's theorem. J Guid Contr Dynam, 7(4):462-470.

[12]Hohmann W, 1960. The Attainability of Heavenly Bodies. NASA Technical Translation F-44, Washington, USA.

[13]Hull DG, 2003. Optimal Control Theory for Applications. Springer, New York, USA.

[14]Kierzenka J, 1998. Studies in the Numerical Solution of Ordinary Differential Equations. PhD Thesis, Southern Methodist University, Dallas, USA.

[15]Lawden DF, 1963. Optimal Trajectories for Space Navigation. Butterworths, London, UK.

[16]Leitmann G, 1981. The Calculus of Variations and Optimal Control: an Introduction. Springer, New York, USA.

[17]Li DY, Li DZ, 1991. Further discussion on optimal transfer between two circular orbits by dual impulse. Chin Space Sci Technol, 12(6):1-10 (in Chinese).

[18]Longuski JM, Guzmán JJ, Prussing JE, 2014. Optimal Control with Aerospace Applications. Springer, New York, USA.

[19]Marec JP, 1979. Optimal Space Trajectories. Elsevier, Amsterdam.

[20]Mathwig J, 2004. On Properties of the Hohmann Transfer. MS Thesis, Rice University, Houston, Texas, USA.

[21]McCormick GP, 1967. Second order conditions for constrained minima. SIAM J Appl Math, 15(3):641-652.

[22]Miele A, Ciarci‘a M, Mathwig J, 2004. Reflections on the Hohmann transfer. J Optim Theory Appl, 123(2): 233-253.

[23]Moyer HG, 1965. Minimum impulse coplanar circle-ellipse transfer. AIAA J, 3(4):723-726.

[24]Palmore J, 1984. An elementary proof of the optimality of Hohmann transfers. J Guid Contr Dynam, 7(5):629-630.

[25]Pontani M, 2009. Simple method to determine globally optimal orbital transfers. J Guid Contr Dynam, 32(3):899-914.

[26]Prussing JE, 1992. Simple proof of the global optimality of the Hohmann transfer. J Guid Contr Dynam, 15(4): 1037-1038.

[27]Prussing JE, 2010. Primer vector theory and applications. In: Conway BA (Ed.), Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge, p.16-36.

[28]Prussing JE, Conway BA, 1993. Orbital Mechanics. Oxford University Press, New York, USA.

[29]Shampine LF, Gladwell I, Thompson S, 2003. Solving ODEs with Matlab. Cambridge University Press, Cambridge.

[30]Ting L, 1960. Optimum orbital transfer by impulses. ARS J, 30(11):1013-1018.

[31]Vertregt M, 1958. Interplanetary orbits. J Br Interplanet Soc, 16:326-354.

[32]Yu ML, 1990. Selection of launch trajectory for launching geosynchronous satellite. Chin Space Sci Technol, 2(1):21-27 (in Chinese).

[33]Yuan FY, Matsushima K, 1995. Strong Hohmann transfer theorem. J Guid Contr Dynam, 18(2):371-373.

[34]Zefran M, Desai JP, Kumar V, 1996. Continuous motion plans for robotic systems with changing dynamic behavior. Proc 2nd Int Workshop on Algorithmic Foundations of Robotics.

[35]Zhang G, Zhang XY, Cao XB, 2014. Tangent-impulse transfer from elliptic orbit to an excess velocity vector. Chin J Aeronaut, 27(3):577-583.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE