Full Text:   <5587>

Summary:  <1634>

CLC number: TN454

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-08-31

Cited: 0

Clicked: 5983

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yang Gao

https://orcid.org/0000-0002-3282-1618

Fan Zhang

https://orcid.org/0000-0001-6500-1598

Lei Li

https://orcid.org/0000-0001-7394-4094

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.9 P.1260-1269

http://doi.org/10.1631/FITEE.2000292


A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis


Author(s):  Yang Gao, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, Xiaobang Shang

Affiliation(s):  School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China; more

Corresponding email(s):   gaoyang678@outlook.com, lilei@zzu.edu.cn

Key Words:  Amplifier, Filter–, amplifier integration, Microstrip, Coupling matrix


Yang Gao, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, Xiaobang Shang. A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1260-1269.

@article{title="A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis",
author="Yang Gao, Fan Zhang, Yingying Qiao, Jiawei Zang, Lei Li, Xiaobang Shang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="9",
pages="1260-1269",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000292"
}

%0 Journal Article
%T A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis
%A Yang Gao
%A Fan Zhang
%A Yingying Qiao
%A Jiawei Zang
%A Lei Li
%A Xiaobang Shang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 9
%P 1260-1269
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000292

TY - JOUR
T1 - A microstrip filter direct-coupled amplifier based on active coupling matrix synthesis
A1 - Yang Gao
A1 - Fan Zhang
A1 - Yingying Qiao
A1 - Jiawei Zang
A1 - Lei Li
A1 - Xiaobang Shang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 9
SP - 1260
EP - 1269
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000292


Abstract: 
This paper presents a methodology of designing an amplifier integrated with a microstrip filter using an active coupling matrix. The microstrip filter is directly coupled to the active device, and the integrated filter amplifier can achieve filtering as well as matching functionalities, simultaneously, eliminating the need for separate matching networks. The filter amplifier is represented by an active coupling matrix, with additional columns and rows in the matrix corresponding to the active transistor. The matrix can be used to calculate the S-parameter responses (i.e., the return loss and the gain) and the initial dimensions of the integrated device. Moreover, the integration of a filter and an amplifier leads to a reduced loss and a more compact architecture of the devices. An X-band microstrip filter amplifier has been designed and demonstrated as an example. microstrip technology has been chosen because of its appealing advantages of easy fabrication, low cost, and most importantly, easy integration with active devices.

基于有源耦合矩阵的一种微带直接耦合式滤波放大器

高杨1,张帆2,乔莹莹1,臧家伟3,李磊1,商小邦4
1郑州大学物理与微电子学院,中国郑州市,450001
2电子科技大学物理学院,中国成都市,610054
3中国信息通信研究院泰尔实验室,中国北京市,100191
4英国国家物理实验室,英国特丁顿市,TW11 0LW
摘要:提出一种基于有源耦合矩阵的微带集成滤波放大器的设计理论。通过消除匹配结构,微带滤波器可直接与放大器耦合,同时实现滤波和匹配功能。通过引入附加的行和列表示有源晶体管,该放大器的拓扑结构可用耦合矩阵综合和表达。该有源耦合矩阵可用于计算S参数(回波损耗和增益)和集成器件的初始物理尺寸。该集成设计方法有效降低了电磁波损耗,并且使器件结构更为紧凑。由于微带线易加工、低成本、易于与有源器件集成等优点,本文设计、加工并测量了基于微带线工艺的X波段放大器。

关键词:放大器;滤波-放大器集成;微带线;耦合矩阵

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aljarosha A, Zaman AU, Maaskant R, 2017. A wideband contactless and bondwire-free MMIC to waveguide transition. IEEE Microw Wirel Compon Lett, 27(5):437-439.

[2]Bahl IJ, 2008. Fundamentals of RF and Microwave Transistor Amplifiers. Wiley, Hoboken, USA.

[3]Cameron RJ, 2011. Advanced filter synthesis. IEEE Microw Mag, 12(6):42-61.

[4]Cameron RJ, Kudsia CM, Mansour RR, 2007. Microwave Filters for Communication Systems: Fundamentals, Design and Applications. Wiley, Hoboken, USA.

[5]Chang CY, Itoh T, 1990. Microwave active filters based on coupled negative resistance method. IEEE Trans Microw Theory Tech, 38(12):1879-1884.

[6]Chen KL, Lee J, Chappell WC, et al., 2013a. Co-design of highly efficient power amplifier and high-Q output bandpass filter. IEEE Trans Microw Theory Tech, 61(11):3940-3950.

[7]Chen KL, Lee TC, Peroulis D, 2013b. Co-design of multi-band high-efficiency power amplifier and three-pole high-Q tunable filter. IEEE Microw Wirel Compon Lett, 23(12):647-649.

[8]Chun YH, Yun SW, Rhee JK, 2002. Active impedance inverter: analysis and its application to the bandpass filter design. Proc IEEE MTT-S Int Microwave Symp, p.1911-1914.

[9]Chun YH, Lee JR, Yun SW, et al., 2005. Design of an RF low-noise bandpass filter using active capacitance circuit. IEEE Trans Microw Theory Tech, 53(2):687-695.

[10]Courtney PG, Zeng J, Tran T, et al., 2015. 120W Ka band power amplifier utilizing GaN MMICs and coaxial waveguide spatial power combining. Proc IEEE Compound Semiconductor Integrated Circuit Symp, p.1-4.

[11]Darcel L, Dueme P, Funck R, et al., 2005. New MMIC approach for low noise high order active filters. Proc IEEE MTT-S Int Microwave Symp, p.787-790.

[12]Gao Y, Powell J, Shang XB, et al., 2018. Coupling matrix-based design of waveguide filter amplifiers. IEEE Trans Microw Theory Tech, 66(12):5300-5309.

[13]Gao Y, Shang XB, Guo C, et al., 2019. Integrated waveguide filter amplifier using the coupling matrix technique. IEEE Microw Wirel Compon Lett, 29(4):267-269.

[14]Gao Y, Zhang F, Lv X, et al., 2020. Substrate integrated waveguide filter–amplifier design using active coupling matrix technique. IEEE Trans Microw Theory Tech, 68(5):1706-1716.

[15]Gonzalez G, 1996. Microwave Transistor Amplifiers: Analysis and Design (2nd Ed.). Prentice Hall, Pearson, UK.

[16]Ito M, Maruhashi K, Kishimoto S, et al., 2004. 60-GHz-band coplanar MMIC active filters. IEEE Trans Microw Theory Tech, 52(3):743-750.

[17]Kumar TB, Ma KX, Yeo KS, 2017. A 60-GHz coplanar waveguide-based bidirectional LNA in SiGe BiCMOS. IEEE Microw Wirel Compon Lett, 27(8):742-744.

[18]Kurokawa K, 1965. Power waves and the scattering matrix. IEEE Trans Microw Theory Tech, 13(2):194-202.

[19]Lin YS, Wu JF, Hsia WF, et al., 2013. Design of electronically switchable single-to-balanced bandpass low-noise amplifier. IET Microw Antenn Propag, 7(7):510-517.

[20]Pozar DM, 2012. Microwave Engineering (4th Ed.). Wiley, New York, USA.

[21]Schwierz F, Liou JJ, 2002. Modern Microwave Transistors: Theory, Design, and Performance. Wiley, Hoboken, USA.

[22]Strang G, 2016. Introduction to Linear Algebra (5th Ed.). Wellesley-Cambridge Press, Wellesley, USA.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE