Full Text:   <529>

Summary:  <521>

CLC number: TN433

On-line Access: 2021-12-23

Received: 2021-11-10

Revision Accepted: 2021-11-30

Crosschecked: 2021-12-07

Cited: 0

Clicked: 820

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Lian-ming Li

https://orcid.org/0000-0003-1873-4806

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.12 P.1666-1676

http://doi.org/10.1631/FITEE.2100525


Wideband cryogenic amplifier for a superconducting nanowire single-photon detector


Author(s):  Lianming Li, Long He, Xu Wu, Xiaokang Niu, Chao Wan, Lin Kang, Xiaoqing Jia, Labao Zhang, Qingyuan Zhao, Xuecou Tu

Affiliation(s):  National Mobile Communications Research Laboratory, Department of Radio Engineering, School of Information Science and Engineering, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   Lianming.LI@seu.edu.cn

Key Words:  Cryogenic amplifier, Wideband amplifier, Superconducting nanowire single-photon detector (SNSPD)


Lianming Li, Long He, Xu Wu, Xiaokang Niu, Chao Wan, Lin Kang, Xiaoqing Jia, Labao Zhang, Qingyuan Zhao, Xuecou Tu. Wideband cryogenic amplifier for a superconducting nanowire single-photon detector[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1666-1676.

@article{title="Wideband cryogenic amplifier for a superconducting nanowire single-photon detector",
author="Lianming Li, Long He, Xu Wu, Xiaokang Niu, Chao Wan, Lin Kang, Xiaoqing Jia, Labao Zhang, Qingyuan Zhao, Xuecou Tu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="12",
pages="1666-1676",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100525"
}

%0 Journal Article
%T Wideband cryogenic amplifier for a superconducting nanowire single-photon detector
%A Lianming Li
%A Long He
%A Xu Wu
%A Xiaokang Niu
%A Chao Wan
%A Lin Kang
%A Xiaoqing Jia
%A Labao Zhang
%A Qingyuan Zhao
%A Xuecou Tu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 12
%P 1666-1676
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100525

TY - JOUR
T1 - Wideband cryogenic amplifier for a superconducting nanowire single-photon detector
A1 - Lianming Li
A1 - Long He
A1 - Xu Wu
A1 - Xiaokang Niu
A1 - Chao Wan
A1 - Lin Kang
A1 - Xiaoqing Jia
A1 - Labao Zhang
A1 - Qingyuan Zhao
A1 - Xuecou Tu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 12
SP - 1666
EP - 1676
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100525


Abstract: 
We present a low-power inductorless wideband differential cryogenic amplifier using a 0.13-μm SiGe BiCMOS process for a superconducting nanowire single-photon detector (SNSPD). With a shunt–shunt feedback and capacitive coupling structure, theoretical analysis and simulations were undertaken, highlighting the relationship of the amplifier gain with the tunable design parameters of the circuit. In this way, the design and optimization flexibility can be increased, and a required gain can be achieved even without an accurate cryogenic device model. To realize a flat terminal impedance over the frequency of interest, an RC shunt compensation structure was employed, improving the amplifier’s closed-loop stability and suppressing the amplifier overshoot. The S-parameters and transient performance were measured at room temperature (300 K) and cryogenic temperature (4.2 K). With good input and output matching, the measurement results showed that the amplifier achieved a 21-dB gain with a 3-dB bandwidth of 1.13 GHz at 300 K. At 4.2 K, the gain of the amplifier can be tuned from 15 to 24 dB, achieving a 3-dB bandwidth spanning from 120 kHz to 1.3 GHz and consuming only 3.1 mW. Excluding the chip pads, the amplifier chip core area was only about 0.073 mm2.

用于超导纳米线单光子探测器的宽带超低温放大器

李连鸣1,2,何龙2,吴旭1,2,牛晓康1,万超2,康琳2,3,贾小氢2,3,张蜡宝2,3,赵清源2,3,涂学凑2,3
1东南大学信息科学与工程学院无线电工程系移动通信国家重点实验室,中国南京市,210096
2紫金山实验室,中国南京市,211111
3南京大学电子科学与工程学院超导电子研究所,中国南京市,210093
摘要:为有效读出超导纳米线单光子探测器(SNSPD)输出信号,提出一种基于0.13 µm SiGe BiCMOS工艺的低功耗无电感宽带差分超低温放大器。为解决缺少超低温器件精确模型的问题,结合并联-并联反馈和电容耦合超低温放大器结构,通过详细理论分析和仿真,确定了放大器增益与电路可调设计参数间的关系,提高了设计和优化的灵活性,从而实现所需增益。为实现工作频率范围内端口阻抗平坦特性,采用RC并联补偿结构,有效提高了放大器闭环稳定性,并可抑制放大器过冲问题。给出室温(300 K)和低温(4.2 K)下S参数和瞬态性能测试结果。在良好输入输出阻抗匹配下,该放大器在300 K温度下3 dB带宽为1.13 GHz,增益为21 dB。在4.2 K温度下,该放大器增益可在15~24 dB范围内调节,其3 dB带宽为120 kHz~1.3 GHz,功耗仅3.1 mW。去除芯片外围焊盘,该超低温放大器芯片核心面积仅为0.073 mm2

关键词:超低温放大器;宽带放大器;超导纳米线单光子探测器

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bardin JC, Weinreb S, 2008. Experimental cryogenic modeling and noise of SiGe HBTs. Proc IEEE MTT-S Int Microwave Symp Digest, p.459-462.

[2]Bardin JC, Weinreb S, 2009. A 0.1–5 GHz cryogenic SiGe MMIC LNA. IEEE Microw Wirel Compon Lett, 19(6):407-409.

[3]Bardin JC, Weinreb S, 2010. A DC-4 GHz 270Ω differential SiGe low-noise amplifier for cryogenic applications. Proc 5th European Microwave Integrated Circuits, p.186-189.

[4]Birnbaum K, Charles JR, Farr WH, et al., 2011. Deep-space optical terminals: ground laser receiver. Proc Int Conf on Space Optical Systems and Applications, p.136-141.

[5]Cahall CT, Gauthier DJ, Kim J, 2016. Cryogenic amplifiers for a superconducting nanowire single photon detector system. Proc Conf on Lasers and Electro-Optics, p.1-2.

[6]Cha E, Wadefalk N, Moschetti G, et al., 2020. InP HEMTs for sub-mW cryogenic low-noise amplifiers. IEEE Electron Dev Lett, 41(7):1005-1008.

[7]Chang SW, Bardin JC, 2017. A wideband cryogenic SiGe LNA MMIC with an average noise temperature of 2.8 K from 0.3–3 GHz. Proc IEEE MTT-S Int Microwave Symp, p.157-159.

[8]Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578-1586.

[9]He L, Li LM, Niu XK, et al., 2019. A low-power, inductorless wideband cryogenic amplifier for superconducting nanowire single photon detector. IEEE Trans Appl Supercond, 29(6):2200306.

[10]Kitaygorsky J, Slysz W, Shouten R, et al., 2017. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout. Phys C Supercond Appl, 532:33-39.

[11]Korolev AM, Shulga VM, Turutanov OG, 2016. An ultra-low-power multi-octave deep-cooled amplifier for superconducting single-photon detectors. Proc 9th Int Kharkiv Symp on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, p.1-3.

[12]Liu MM, Krämer J, Hu YP, et al., 2017. Quantum security analysis of a lattice-based oblivious transfer protocol. Front Inform Technol Electron Eng, 18(9):1348-1369.

[13]Marsili F, Verma VB, Stern JA, et al., 2013. Detecting single infrared photons with 93% system efficiency. Nat Photon, 7(3):210-214.

[14]Montazeri S, Wong WT, Coskun AH, et al., 2016. Ultra-low-power cryogenic SiGe low-noise amplifiers: theory and demonstration. IEEE Trans Microw Theory Techn, 64(1):178-187.

[15]Moschetti G, Wadefalk N, Nilsson PÅ, et al., 2012. Cryogenic InAs/AlSb HEMT wideband low-noise IF amplifier for ultra-low-power applications. IEEE Microw Wirel Compon Lett, 22(3):144-146.

[16]Qu SQ, Wang XC, Zhang C, et al., 2019. 6-7 GHz cryogenic low-noise mHEMT-based amplifier for quantum computing. Proc Cross Strait Quad-Regional Radio Science and Wireless Technology Conf, p.1-3.

[17]Ramírez W, Forstén H, Varonen M, et al., 2019. Cryogenic operation of a millimeter-wave SiGe BiCMOS low-noise amplifier. IEEE Microw Wirel Compon Lett, 29(6):403-405.

[18]Russell D, Weinreb S, 2012. Low-power very low-noise cryogenic SiGe IF amplifiers for terahertz mixer receivers. IEEE Trans Microw Theory Techn, 60(6):1641-1648.

[19]Schleeh J, Wadefalk N, Nilsson PÅ, et al., 2013. Cryogenic broadband ultra-low-noise MMIC LNAs for radio astronomy applications. IEEE Trans Microw Theory Techn, 61(2):871-877.

[20]Shiao YSJ, Huang GW, Chiueh TH, 2014. A 4 GHz cryogenic amplifier in 0.18 μm general purpose BiCMOS technology. Proc Asia-Pacific Microwave Conf, p.1181-1183.

[21]SHI Cryogenics Group, 2012. RDK-415D 4K Cryocooler Series. https://www.shicryogenics.com/product/rdk-415d-4k-cryocooler-series/ [Accessed on Nov. 10, 2021].

[22]Tao X, Hao H, Li X, et al., 2020. Characterize the speed of a photon-number-resolving superconducting nanowire detector. IEEE Photon J, 12(4):4501308.

[23]Tarkhov M, Claudon J, Poizat JP, et al., 2008. Ultrafast reset time of superconducting single photon detectors. Appl Phys Lett, 92(24):241112.

[24]Wong WT, Hosseini M, Rücker H, et al., 2020. A 1 mW cryogenic LNA exploiting optimized SiGe HBTs to achieve an average noise temperature of 3.2 K from 4–8 GHz. Proc IEEE/MTT-S Int Microwave Symp, p.181-184.

[25]Yamashita T, Miki S, Qiu W, et al., 2010. Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region. Appl Phys Expr, 3(10):102502.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE