Full Text:   <3734>

Summary:  <1624>

CLC number: TN928

On-line Access: 2021-04-15

Received: 2020-09-17

Revision Accepted: 2021-01-06

Crosschecked: 2021-03-02

Cited: 0

Clicked: 4493

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Wei Fan

https://orcid.org/0000-0002-9835-4485

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.548-559

http://doi.org/10.1631/FITEE.2000484


Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations


Author(s):  Wei Fan, Lassi Hentilä, Pekka Kyösti

Affiliation(s):  Antenna Propagation and Millimeter-wave Systems (APMS) Section, Department of Electronic Systems, Aalborg University, Aalborg 9220, Denmark; more

Corresponding email(s):   wfa@es.aau.dk

Key Words:  Spatial channel model, Over-the-air (OTA) testing, Wireless cable method, Multi-probe anechoic chamber (MPAC) method, FR2 validation


Wei Fan, Lassi Hentilä, Pekka Kyösti. Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 548-559.

@article{title="Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations",
author="Wei Fan, Lassi Hentilä, Pekka Kyösti",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="548-559",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000484"
}

%0 Journal Article
%T Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations
%A Wei Fan
%A Lassi Hentilä
%A Pekka Kyösti
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 548-559
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000484

TY - JOUR
T1 - Spatial fading channel emulation for over-the-air testing of millimeter-wave radios: concepts and experimental validations
A1 - Wei Fan
A1 - Lassi Hentilä
A1 - Pekka Kyösti
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 548
EP - 559
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000484


Abstract: 
Millimeter-wave (mmWave) communication is regarded as the key enabling component for fifth-generation (5G) cellular systems due to the large available spectrum bandwidth. To make mmWave new radio (NR) a reality, tremendous efforts have been exerted from the industry and academia. Performance evaluation of mmWave NR is a mandatory step and the key to ensuring the success of mmWave 5G deployment. Over-the-air (OTA) radiated method of testing mmWave NR in laboratory conditions is highly attractive, since it facilitates virtual field testing of mmWave devices in realistic propagation conditions. In this paper, we first discuss the need for and challenges in OTA measurement of mmWave 5G NR under fading channel conditions. After that, two promising candidate solutions, i.e., wireless cable and multi-probe anechoic chamber (MPAC), are detailed. Their principles, applicability for mmWave NR, and main challenges are discussed. Furthermore, preliminary experimental validation results in a frequency range 2 anechoic chamber are demonstrated for the wireless cable and MPAC methods at 28 GHz.

用于毫米波性能空口测试的空间衰落信道重现技术:概念和实验验证

范伟1,Lassi HENTIL?2,Pekka KY?STI2,3
1奥尔堡大学电子系统系天线传播和毫米波系统实验室,丹麦奥尔堡,9220
2是德科技,芬兰奥卢,90014
3奥卢大学无线通信中心,芬兰奥卢,90014
摘要:拥有大量可用频谱资源的毫米波(mmWave)频段使得毫米波通信被视为第五代(5G)蜂窝系统的关键使能技术。为使毫米波新无线电(NR)成为现实,工业界和学术界做出了巨大努力。毫米波NR的性能评估和测试是确保毫米波5G NR部署成功的关键和必不可少的步骤。极具吸引力和应用前景的毫米波空口(OTA)辐射测试方法是在实验室条件下模拟实际的传播条件对毫米波设备进行虚拟现场测试。本文首先讨论了在衰落信道条件下毫米波5G NR空口测量的需求和挑战。之后,详细介绍了两种有前景的候选测试解决方案,即无线线缆和多探头电波暗室(MPAC),其中包括这两种方案的原理、对毫米波NR的适用性以及主要挑战。最后展示了这两种测试方案在28 GHz频段下初步的实验验证结果。

关键词:空间信道模型;空口测试;无线线缆;多探头电波暗室;FR2验证

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2019. Study on Test Methods.

[2]3GPP, 2020. Study on Radiated Metrics and Test Methodology for the Verification of Multi-antenna Reception Performance of NR User Equipment (UE).

[3]Chen XM, 2014. Throughput modeling and measurement in an isotropic-scattering reverberation chamber. IEEE Trans Antenn Propag, 62(4):2130-2139.

[4]Chen XM, Kildal PS, Orlenius C, et al., 2009. Channel sounding of loaded reverberation chamber for over-the-air testing of wireless devices: coherence bandwidth versus average mode bandwidth and delay spread. IEEE Antenn Wirel Propag Lett, 8:678-681.

[5]CTIA, 2017. Test Plan for 2×2 Downlink MIMO and Transmit Diversity Over-the-Air Performance. CTIA, Washington, USA.

[6]CTIA, 2018. Test Plan for Mobile Station Over-the-Air Performance: Method of Measurement for Radiated RF Power and Receiver Performance.

[7]Fan W, Carton I, Nielsen JO, et al., 2016. Measured wideband characteristics of indoor channels at centimetric and millimetric bands. EURASIP J Wirel Commun Netw, 2016(1):58.

[8]Fan W, Kyösti P, Hentilä L, et al., 2017. MIMO terminal performance evaluation with a novel wireless cable method. IEEE Trans Antenn Propag, 65(9):4803-4814.

[9]Fan W, Kyösti P, Hentilä L, et al., 2018a. A flexible millimeter-wave radio channel emulator design with experimental validations. IEEE Trans Antenn Propagat, 66(11):6446-6451.

[10]Fan W, Kyösti P, Rumney M, et al., 2018b. Over-the-air radiated testing of millimeter-wave beam-steerable devices in a cost-effective measurement setup. IEEE Commun Mag, 56(7):64-71.

[11]Foegelle MD, 2014. The future of MIMO over-the-air testing. IEEE Commun Mag, 52(9):134-142.

[12]Guan K, Peng BL, He DP, et al., 2019a. Channel characterization for intra-wagon communication at 60 and 300 GHz bands. IEEE Trans Veh Technol, 68(6):5193-5207.

[13]Guan K, Peng BL, He DP, et al., 2019b. Measurement, simulation, and characterization of train-to-infrastructure inside-station channel at the terahertz band. IEEE Trans Terahertz Sci Technol, 9(3):291-306.

[14]Ji YL, Fan W, Nilsson MG, et al., 2020. Virtual drive testing over-the-air for vehicular communications. IEEE Trans Veh Technol, 69(2):1203-1213.

[15]Jing Y, Kong HW, Rumney M, 2016. MIMO OTA test for a mobile station performance evaluation. IEEE Instrum Meas Mag, 19(3):43-50.

[16]Keysight Technologies, 2018. OTA Test for Millimeter-Wave 5G NR Devices and Systems.

[17]Kyösti P, Hentilä L, Fan W, et al., 2018. On radiated performance evaluation of massive MIMO devices in multiprobe anechoic chamber OTA setups. IEEE Trans Antenn Propag, 66(10):5485-5497.

[18]Li Y, Xin LJ, Liu XQ, et al., 2020. Dual anechoic chamber setup for over-the-air radiated testing of 5G devices. IEEE Trans Antenn Propag, 68(3):2469-2474.

[19]Muruganathan SD, Lin XQ, Maattanen HL, et al., 2018. An overview of 3GPP Release-15 study on enhanced LTE support for connected drones. https://arxiv.org/abs/1805.00826

[20]Nilsson MG, Hallbjörner P, Arabäck N, et al., 2015. Measurement uncertainty, channel simulation, and disturbance characterization of an over-the-air multiprobe setup for cars at 5.9 GHz. IEEE Trans Ind Electron, 62(12):7859-7869.

[21]Qi YH, Yang G, Liu L, et al., 2017. 5G over-the-air measurement challenges: overview. IEEE Trans Electromagn Compat, 59(6):1661-1670.

[22]Qiao ZL, Wang ZP, Fan W, et al., 2020. Low scattering plane wave generator design using a novel non-coplanar structure for near-field over-the-air testing. IEEE Access, 8:211348-211357.

[23]Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335-349.

[24]Rumney M, 2016. Testing 5G: time to throw away the cables. Microw J, 59(11):10-12,14,16,18.

[25]Rumney M, Kong HW, Jing Y, et al., 2016. Recent advances in the radiated two-stage MIMO OTA test method and its value for antenna design optimization. Proc 10th European Conf on Antennas and Propagation, p.1-5.

[26]Schirmer C, Lorenz M, Kotterman ATT, et al., 2016. MIMO over-the-air testing for electrically large objects in non-anechoic environments. Proc 10th European Conf on Antennas and Propagation, p.1-6.

[27]Shafi M, Molisch AF, Smith PJ, et al., 2017. 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Commun, 35(6):1201-1221.

[28]Wang WM, Wang RR, Gao HQ, et al., 2019. Implementation and analysis of 3D channel emulation method in multi-probe anechoic chamber setups. IEEE Access, 7:108571-108580.

[29]Yu W, Qi YH, Liu KF, et al., 2014. Radiated two-stage method for LTE MIMO user equipment performance evaluation. IEEE Trans Electromagn Compat, 56(6):1691-1696.

[30]Zhang FC, Fan W, Wang ZP, 2021. Achieving wireless cable testing of high-order MIMO devices with a novel closed-form calibration method. IEEE Trans Antenn Propag, 69(1):478-487.

[31]Zhang YS, Wang ZP, Sun XL, et al., 2020. Design and implementation of a wideband dual-polarized plane wave generator with tapered feeding nonuniform array. IEEE Antenn Wirel Propag Lett, 19(11):1988-1992.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE