Full Text:   <6232>

Summary:  <1568>

CLC number: TN928

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2021-05-11

Cited: 0

Clicked: 4951

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qiuming Zhu

https://orcid.org/0000-0002-4995-5970

Xiaomin Chen

https://orcid.org/0000-0002-9052-665X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.6 P.767-776

http://doi.org/10.1631/FITEE.2000497


A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications


Author(s):  Qiuming Zhu, Mengtian Yao, Fei Bai, Xiaomin Chen, Weizhi Zhong, Boyu Hua, Xijuan Ye

Affiliation(s):  The Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; more

Corresponding email(s):   zhuqiuming@nuaa.edu.cn, yaomengtian@nuaa.edu.cn, baifei@nuaa.edu.cn, chenxm402@nuaa.edu.cn, zhongwz@nuaa.edu.cn, byhua@nuaa.edu.cn, yexijuan@nuaa.edu.cn

Key Words:  Path loss, UAV-to-ground channel, Millimeter-wave (mmWave) communication channel, Ray-tracing, Altitude-dependent


Share this article to: More |Next Article >>>

Qiuming Zhu, Mengtian Yao, Fei Bai, Xiaomin Chen, Weizhi Zhong, Boyu Hua, Xijuan Ye. A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(6): 767-776.

@article{title="A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications",
author="Qiuming Zhu, Mengtian Yao, Fei Bai, Xiaomin Chen, Weizhi Zhong, Boyu Hua, Xijuan Ye",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="6",
pages="767-776",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000497"
}

%0 Journal Article
%T A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications
%A Qiuming Zhu
%A Mengtian Yao
%A Fei Bai
%A Xiaomin Chen
%A Weizhi Zhong
%A Boyu Hua
%A Xijuan Ye
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 6
%P 767-776
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000497

TY - JOUR
T1 - A general altitude-dependent path loss model for UAV-to-ground millimeter-wave communications
A1 - Qiuming Zhu
A1 - Mengtian Yao
A1 - Fei Bai
A1 - Xiaomin Chen
A1 - Weizhi Zhong
A1 - Boyu Hua
A1 - Xijuan Ye
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 6
SP - 767
EP - 776
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000497


Abstract: 
A general empirical path loss (PL) model for air-to-ground (A2G) millimeter-wave (mmWave) channels is proposed in this paper. Different from existing PL models, the new model takes the height factor of unmanned aerial vehicles (UAVs) into account, and divides the propagation conditions into three cases (i.e., line-of-sight, reflection, and diffraction). A map-based deterministic PL prediction algorithm based on the ray-tracing (RT) technique is developed, and is used to generate numerous PL data for different cases. By fitting and analyzing the PL data under different scenarios and UAV heights, altitude-dependent model parameters are provided. Simulation results show that the proposed model can be effectively used to predict PL values for both low- and high-altitude cases. The prediction results of the proposed model better match the RT-based calculation results than those of the Third Generation Partnership Project (3GPP) model and the close-in model. The standard deviation of the PL is also much smaller. Moreover, the new model is flexible and can be extended to other A2G scenarios (not included in this paper) by adjusting the parameters according to the simulation or measurement data.

一种与高度相关的无人机对地毫米波传播损耗模型

朱秋明1,2,姚梦恬1,柏菲1,陈小敏1,仲伟志3,华博宇1,叶溪娟1
1南京航空航天大学电子信息工程学院电磁频谱空间认知动态系统工信部重点实验室,中国南京市,211106
2西安电子科技大学综合业务网理论及关键技术国家重点实验室,中国西安市,710000
3南京航空航天大学航天学院电磁频谱空间认知动态系统工信部重点实验室,中国南京市,211106
摘要:提出一种通用的空地毫米波传播损耗模型。与现有传播损耗模型不同,本模型考虑了无人机高度因素,并将传播类型分为3种情况(视距、反射和绕射)。同时,提出一种结合射线追踪技术和数字地图的确定性传播损耗预测算法,并用于不同场景下生成大量数据。通过拟合分析不同场景和无人机高度下的传播损耗数据,得到与高度相关的模型参数。仿真结果表明,所提模型在低空和高空情况下都能准确预测传播损耗。相比3GPP模型和CI模型,所提模型的预测结果与射线追踪计算结果更加一致,标准偏差更小。此外,本文模型能通过仿真或测量数据进行参数调整,从而扩展到其他空地通信场景。

关键词:传播损耗;无人机对地信道;毫米波通信信道;射线追踪;高度相关

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]3GPP, 2016. Technical Specification Group Radio Access Network; Channel Model for Frequency Spectrum above 6 GHz (Release 14). TR 38.900 V14.2.0. 3rd Generation Partnership Project (3GPP).

[2]Al-Hourani A, Gomez K, 2018. Modeling cellular-to-UAV path-loss for suburban environments. IEEE Wirel Commun Lett, 7(1):82-85.

[3]Bhuvaneshwari A, Hemalatha R, Satyasavithri T, 2015. Path loss prediction analysis by ray tracing approach for NLOS indoor propagation. Proc Int Conf on Signal Processing and Communication Engineering Systems, p.486-491.

[4]Cai XS, Wang NX, Rodríguez-Piñeiro J, et al., 2019. Low altitude air-to-ground channel characterization in LTE network. Proc 13th European Conf on Antennas and Propagation, p.1-5.

[5]Chen XM, Hu XJ, Zhu QM, et al., 2018. Channel modeling and performance analysis for UAV relay systems. China Commun, 15(12):89-97.

[6]Cheng LL, Zhu QM, Wang CX, et al., 2020. Modeling and simulation for UAV air-to-ground mmWave channels. Proc 14th European Conf on Antennas and Propagation, p.1-5.

[7]Cui ZZ, Briso-Rodríguez C, Guan K, et al., 2019. Measurement-based modeling and analysis of UAV air-ground channels at 1 and 4 GHz. IEEE Antenn Wirel Propag Lett, 18(9):1804-1808.

[8]Dutta S, Hsieh F, Vook FW, 2019. HAPS based communication using mmWave bands. Proc IEEE Int Conf on Communications, p.1-6.

[9]Fan W, Carton I, Nielsen JO, et al., 2016. Measured wideband characteristics of indoor channels at centimetric and millimetric bands. EURASIP J Wirel Commun Netw, 2016(1):58.

[10]Hur S, Baek S, Kim B, et al., 2016. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 10(3):454-469.

[11]ITU, 2017. Terrain Cover Types. International Telecommunication Union.

[12]Khawaja W, Guvenc I, Matolak DW, et al., 2019. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun Surv Tut, 21(3):2361-2391.

[13]Li JF, Zhang XF, Cao RZ, et al., 2013. Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar. IEEE Commun Lett, 17(3):443-446.

[14]MacCartney GR, Rappaport TS, 2017a. Rural macrocell path loss models for millimeter wave wireless communications. IEEE J Sel Areas Commun, 35(7):1663-1677.

[15]MacCartney GR, Rappaport TS, 2017b. Study on 3GPP rural macrocell path loss models for millimeter wave wireless communications. Proc IEEE Int Conf on Communications, p.1-7.

[16]MacCartney GR, Rappaport TS, Sun S, et al., 2015. Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks. IEEE Access, 3:2388-2424.

[17]Mani F, Vitucci EM, Barbiroli M, et al., 2018. 26GHz ray-tracing pathloss prediction in outdoor scenario in presence of vegetation. Proc 12th European Conf on Antennas and Propagation, p.1-5.

[18]Mededović P, Veletić M, Blagojević Z, 2012. Wireless insite software verification via analysis and comparison of simulation and measurement results. Proc 35th Int Convention MIPRO, p.776-781.

[19]Rappaport TS, MacCartney GR, Samimi MK, et al., 2015. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun, 63(9):3029-3056.

[20]Rappaport TS, Sun S, Shafi M, 2017a. Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications. Proc IEEE 86th Vehicular Technology Conf, p.1-5.

[21]Rappaport TS, Xing YC, MacCartney GR, et al., 2017b. Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Trans Antenn Propag, 65(12):6213-6230.

[22]Samimi MK, Rappaport TS, MacCartney GR, 2015. Probabilistic omnidirectional path loss models for millimeter-wave outdoor communications. IEEE Wirel Commun Lett, 4(4):357-360.

[23]Shi Y, Enami R, Wensowitch J, et al., 2018. Measurement-based characterization of LOS and NLOS drone-to-ground channels. Proc IEEE Wireless Communications and Networking Conf, p.1-6.

[24]Sun S, Rappaport TS, Thomas TA, et al., 2016. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Trans Veh Technol, 65(5):2843-2860.

[25]Wang CX, Bian J, Sun J, et al., 2018. A survey of 5G channel measurements and models. IEEE Commun Surv Tut, 20(4):3142-3168.

[26]Wang XY, Gursoy MC, 2019. Coverage analysis for energy-harvesting UAV-assisted mmWave cellular networks. IEEE J Sel Areas Commun, 37(12):2832-2850.

[27]Wu YY, Gao ZB, Chen CB, et al., 2015. Ray tracing based wireless channel modeling over the sea surface near Diaoyu Islands. Proc 1st Int Conf on Computational Intelligence Theory, Systems and Applications, p.124-128.

[28]Yang GS, Zhang Y, He ZW, et al., 2019. Machine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channels. IET Micro Antenn Propag, 13(8):1113-1121.

[29]You XH, Wang CX, Huang J, et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inform Sci, 64(1):110301.

[30]Zhang JH, Shafi M, Molisch A, et al., 2018. Channel models and measurements for 5G. IEEE Commun Mag, 56(12):12-13.

[31]Zhao XW, Du F, Geng SY, et al., 2020. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework. IEEE J Sel Area Commun, 38(9):1945-1954.

[32]Zhong WZ, Xu L, Zhu QM, et al., 2019a. MmWave beamforming for UAV communications with unstable beam pointing. China Commun, 16(1):37-46.

[33]Zhong WZ, Xu L, Zhu QM, et al., 2019b. A novel beam design method for mmWave multi-antenna arrays with mutual coupling reduction. China Commun, 16(10):37-44.

[34]Zhu QM, Li H, Fu Y, et al., 2018. A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator. IEEE Trans Commun, 66(9):3865-3878.

[35]Zhu QM, Wang YW, Jiang KL, et al., 2019. 3D non-stationary geometry-based multi-input multi-output channel model for UAV-ground communication systems. IET Microw Antenn Propag, 13(8):1104-1112.

[36]Zhu QM, Jiang S, Wang CX, et al., 2020. Effects of digital map on the RT-based channel model for UAV mmWave communications. Proc Int Wireless Communications and Mobile Computing, p.1648-1653.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE