CLC number: TP13
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-09-02
Cited: 0
Clicked: 6821
Citations: Bibtex RefMan EndNote GB/T7714
Yan Wei, Jun Luo, Huaicheng Yan, Yueying Wang. Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1610-1624.
@article{title="Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints",
author="Yan Wei, Jun Luo, Huaicheng Yan, Yueying Wang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="12",
pages="1610-1624",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000692"
}
%0 Journal Article
%T Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints
%A Yan Wei
%A Jun Luo
%A Huaicheng Yan
%A Yueying Wang
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 12
%P 1610-1624
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000692
TY - JOUR
T1 - Event-triggered adaptive finite-time control for nonlinear systems under asymmetric time-varying state constraints
A1 - Yan Wei
A1 - Jun Luo
A1 - Huaicheng Yan
A1 - Yueying Wang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 12
SP - 1610
EP - 1624
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000692
Abstract: This paper investigates the issue of event-triggered adaptive finite-time state-constrained control for multi-input multi-output uncertain nonlinear systems. To prevent asymmetric time-varying state constraints from being violated, a tan-type nonlinear mapping is established to transform the considered system into an equivalent “non-constrained” system. By employing a smooth switch function in the virtual control signals, the singularity in the traditional finite-time dynamic surface control can be avoided. Fuzzy logic systems are used to compensate for the unknown functions. A suitable event-triggering rule is introduced to determine when to transmit the control laws. Through Lyapunov analysis, the closed-loop system is proved to be semi-globally practical finite-time stable, and the state constraints are never violated. Simulations are provided to evaluate the effectiveness of the proposed approach.
[1]Chen CLP, Liu YJ, Wen GX, 2014. Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans Cybern, 44(5):583-593.
[2]Chen MH, Sun J, Karimi HR, 2020. Input-output finite-time generalized dissipative filter of discrete time-varying systems with quantization and adaptive event-triggered mechanism. IEEE Trans Cybern, 50(12):5061-5073.
[3]Cui B, Xia YQ, Liu K, et al., 2020. Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: a smooth control approach. IEEE Trans Neur Netw Learn Syst, 31(11):4920-4932.
[4]Cui RX, Yang CG, Li Y, et al., 2017. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans Syst Man Cybern Syst, 47(6):1019-1029.
[5]Demirel B, Leong AS, Gupta V, et al., 2019. Tradeoffs in stochastic event-triggered control. IEEE Trans Autom Contr, 64(6):2567-2574.
[6]Dong WJ, Farrell JA, Polycarpou MM, et al., 2012. Command filtered adaptive backstepping. IEEE Trans Contr Syst Technol, 20(3):566-580.
[7]Ge SS, Wang C, 2004. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neur Netw, 15(3):674-692.
[8]Guo T, Wu XW, 2014. Backstepping control for output-constrained nonlinear systems based on nonlinear mapping. Neur Comput Appl, 25(7-8):1665-1674.
[9]Hardy GH, Littlewood JE, Polya G, 1952. Inequalities. Cambridge University Press, Cambridge, UK.
[10]Hua Y, Zhang TP, 2020a. Adaptive control of pure-feedback nonlinear systems with full-state time-varying constraints and unmodeled dynamics. Int J Adapt Contr Signal Process, 34(2):183-198.
[11]Hua Y, Zhang TP, 2020b. Adaptive neural event-triggered control of MIMO pure-feedback systems with asymmetric output constraints and unmodeled dynamics. IEEE Access, 8:37684-37696.
[12]Jin X, 2016. Adaptive fault tolerant control for a class of input and state constrained MIMO nonlinear systems. Int J Robust Nonlin Contr, 26(2):286-302.
[13]Li BW, Liu Y, Kou KI, et al., 2018. Event-triggered control for the disturbance decoupling problem of Boolean control networks. IEEE Trans Cybern, 48(9):2764-2769.
[14]Li GJ, 2017. Adaptive tracking control for air-breathing hypersonic vehicles with state constraints. Front Inform Technol Electron Eng, 18(5):599-614.
[15]Li YM, Li KW, Tong SC, 2019. Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Trans Fuzzy Syst, 27(1):96-110.
[16]Liu TF, Jiang ZP, 2015. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans Autom Contr, 60(8):2072-2085.
[17]Liu Y, Jiang BX, Lu JQ, et al., 2020. Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft. IEEE Trans Syst Man Cybern Syst, 50(9):3290-3299.
[18]Liu YJ, Ma L, Liu L, et al., 2020. Adaptive neural network learning controller design for a class of nonlinear systems with time-varying state constraints. IEEE Trans Neur Netw Learn Syst, 31(1):66-75.
[19]Liu YL, Ma HJ, Ma H, 2018. Adaptive fuzzy fault-tolerant control for uncertain nonlinear switched stochastic systems with time-varying output constraints. IEEE Trans Fuzzy Syst, 26(5):2487-2498.
[20]Miao P, Shen YJ, Li YJ, et al., 2016. Finite-time recurrent neural networks for solving nonlinear optimization problems and their application. Neurocomputing, 177:120-129.
[21]Polycarpou MM, 1996. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans Autom Contr, 41(3):447-451.
[22]Qian CJ, Lin W, 2001. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Syst Contr Lett, 42(3):185-200.
[23]Qiu JB, Sun KK, Rudas IJ, et al., 2020. Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans Cybern, 50(7):2905-2915.
[24]Sahoo A, Xu H, Jagannathan S, 2016. Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Trans Neur Netw Learn Syst, 27(3):497-509.
[25]Swaroop D, Hedrick JK, Yip PP, et al., 2000. Dynamic surface control for a class of nonlinear systems. IEEE Trans Autom Contr, 45(10):1893-1899.
[26]Tee KP, Ge SS, 2011. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int J Contr, 84(12):2008-2023.
[27]Tee KP, Ge SS, 2012. Control of state-constrained nonlinear systems using integral barrier Lyapunov functionals. 51st IEEE Conf on Decision and Control, p.3239-3244.
[28]Tee KP, Ge SS, Tay EH, 2009. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 45(4):918-927.
[29]Tian QY, Wei JH, Fang JH, et al., 2016. Adaptive fuzzy integral sliding mode velocity control for the cutting system of a trench cutter. Front Inform Technol Electron Eng, 17(1):55-66.
[30]Tong SC, Li YM, Shi P, 2012. Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems. IEEE Trans Fuzzy Syst, 20(4):771-785.
[31]Wang F, Chen B, Liu XP, et al., 2018. Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans Fuzzy Syst, 26(3):1207-1216.
[32]Wang LJ, Chen CLP, Li HY, 2020. Event-triggered adaptive control of saturated nonlinear systems with time-varying partial state constraints. IEEE Trans Cybern, 50(4):1485-1497.
[33]Wang M, Zhang SY, Chen B, et al., 2010. Direct adaptive neural control for stabilization of nonlinear time-delay systems. Sci China Inform Sci, 53(4):800-812.
[34]Wang YC, Zheng WX, Zhang HG, 2017. Dynamic event-based control of nonlinear stochastic systems. IEEE Trans Autom Contr, 62(12):6544-6551.
[35]Wang YC, Zhang JX, Zhang HG, et al., 2020. Adaptive fuzzy output-constrained control for nonlinear stochastic systems with input delay and unknown control coefficients. IEEE Trans Cybern, early access.
[36]Wang YY, Xia YQ, Ahn CK, et al., 2019. Exponential stabilization of Takagi-Sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method. IEEE Trans Syst Man Cybern Syst, 49(2):444-454.
[37]Wei Y, Zhou PF, Wang YY, et al., 2019. Adaptive neural dynamic surface control of MIMO uncertain nonlinear systems with time-varying full state constraints and disturbances. Neurocomputing, 364:16-31.
[38]Wei Y, Zhou PF, Liang YZ, et al., 2020a. Adaptive finite-time neural backstepping control for multi-input and multi-output state-constrained nonlinear systems using tangent-type nonlinear mapping. Int J Robust Nonlin Contr, 30(14):5559-5578.
[39]Wei Y, Wang YY, Ahn CK, et al., 2020b. IBLF-based finite-time adaptive fuzzy output-feedback control for uncertain MIMO nonlinear state-constrained systems. IEEE Trans Fuzzy Syst, early access.
[40]Xia JW, Zhang J, Sun W, et al., 2019. Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst, 49(7):1541-1548.
[41]Xing LT, Wen CY, Liu ZT, et al., 2017. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans Autom Contr, 62(4):2071-2076.
[42]Xing LT, Wen CY, Liu ZT, et al., 2019. Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans Autom Contr, 64(1):290-297.
[43]Xu T, Hao YQ, Duan ZS, 2020. Fully distributed containment control for multiple Euler-Lagrange systems over directed graphs: an event-triggered approach. IEEE Trans Circ Syst I Reg Papers, 67(6):2078-2090.
[44]Xue T, Wang ZW, Zhang T, et al., 2020. Fixed-time constrained acceleration reconstruction scheme for robotic exoskeleton via neural networks. Front Inform Technol Electron Eng, 21(5):705-722.
[45]Yu JP, Shi P, Dong WJ, et al., 2015. Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans Ind Electron, 62(9):5962-5970.
[46]Yu JP, Yu H, Lin CS, et al., 2018. Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans Cybern, 48(8):2378-2387.
[47]Zhang TP, Xia MZ, Yi Y, et al., 2017. Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. IEEE Trans Syst Man Cybern Syst, 47(8):2378-2387.
[48]Zhang TP, Liu HQ, Xia MZ, et al., 2018. Adaptive neural control of MIMO uncertain nonlinear systems with unmodeled dynamics and output constraint. Int J Adapt Contr Signal Process, 32(12):1731-1747.
[49]Zhao K, Song YD, 2019. Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans Autom Contr, 64(3):1265-1272.
[50]Zhao K, Song YD, 2020. Neuroadaptive robotic control under time-varying asymmetric motion constraints: a feasibility-condition-free approach. IEEE Trans Cybern, 50(1):15-24.
[51]Zhu SY, Liu Y, Lou YJ, et al., 2020. Stabilization of logical control networks: an event-triggered control approach. Sci China Inform Sci, 63(1):112203.
Open peer comments: Debate/Discuss/Question/Opinion
<1>